A new version of circular symmetrization with applications to $p$-valent functions
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 996-1011 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new version of circular symmetrization of sets, functions and condensers is proposed, which is different from classical symmetrization in the following respect: the symmetrized sets and condensers lie on the Riemann surface of the inverse function of a Chebyshev polynomial. As applications, Hayman's well-known results for nonvanishing $p$-valent holomorphic functions are supplemented as well as results for $p$-valent functions in a disc which have a zero of order $p$ at the origin. Bibliography: 20 titles.
Keywords: circular symmetrization, capacity of a condenser, Riemann surface, $p$-valent function, Chebyshev polynomial.
@article{SM_2012_203_7_a3,
     author = {V. N. Dubinin},
     title = {A new version of circular symmetrization with applications to $p$-valent functions},
     journal = {Sbornik. Mathematics},
     pages = {996--1011},
     year = {2012},
     volume = {203},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - A new version of circular symmetrization with applications to $p$-valent functions
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 996
EP  - 1011
VL  - 203
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/
LA  - en
ID  - SM_2012_203_7_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T A new version of circular symmetrization with applications to $p$-valent functions
%J Sbornik. Mathematics
%D 2012
%P 996-1011
%V 203
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/
%G en
%F SM_2012_203_7_a3
V. N. Dubinin. A new version of circular symmetrization with applications to $p$-valent functions. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 996-1011. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/

[1] G. M. Goluzin, “O $p$-listnykh funktsiyakh”, Matem. sb., 8(50):2 (1940), 277–284 | MR | Zbl

[2] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[3] Yu. E. Alenitsyn, “O koefitsientakh $p$-listnykh funktsii”, Matem. sb., 10(52):1–2 (1942), 51–58 | MR | Zbl

[4] W. K. Hayman, Symmetrization in the theory of functions, Tech. Rep. No. 11, Stanford University, CA, 1950 | MR

[5] W. K. Hayman, “Some applications of the transfinite diameter to the theory of functions”, J. Analyse Math., 1:1 (1951), 155–179 | DOI | MR | Zbl

[6] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[7] J. Krzyz, “Distortion theorems for bounded $p$-valent functions”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 12 (1958), 29–38 | MR | Zbl

[8] A. W. Goodman, “On the critical points of a multivalent function”, Trans. Amer. Math. Soc., 89:2 (1958), 295–309 | DOI | MR | Zbl

[9] S. A. Gel'fer, “$p$-valent functions”, Soviet Math. (Iz. VUZ), 21:5 (1977), 12–20 | MR | Zbl

[10] D. C. Spencer, “On finitely mean valent functions”, Proc. London Math. Soc. (2), 47 (1941), 201–211 | DOI | MR | Zbl

[11] P. R. Garabedian, H. L. Royden, “The one-quarter theorem for mean univalent functions”, Ann. of Math. (2), 59:2 (1954), 316–324 | DOI | MR | Zbl

[12] J. A. Jenkins, “On circumferentially mean $p$-valent functions”, Trans. Amer. Math. Soc., 79:2 (1955), 423–428 | DOI | MR | Zbl

[13] J. A. Jenkins, Univalent functions and conformal mapping, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958 | MR | Zbl | Zbl

[14] V. A. Shlyk, “Distortion theorems for a family of weakly univalent functions in the disk”, Math. Notes, 27:6 (1980), 446–449 | DOI | MR | Zbl | Zbl

[15] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl

[16] V. N. Dubinin, “A majorization principle for $p$-valent functions”, Math. Notes, 65:4 (1999), 447–453 | DOI | MR | Zbl

[17] V. N. Dubinin, V. Yu. Kim, “Averaging transformation of sets and functions on Riemann surfaces”, Russian Math. (Iz. VUZ), 45:5 (2001), 19–27 | DOI | MR | Zbl

[18] A. W. Goodman, “Open problems on univalent and multivalent functions”, Bull. Amer. Math. Soc., 74:6 (1968), 1035–1050 | DOI | MR | Zbl

[19] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[20] A. Hurwitz, R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl