A new version of circular symmetrization with applications to $p$-valent functions
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 996-1011

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of circular symmetrization of sets, functions and condensers is proposed, which is different from classical symmetrization in the following respect: the symmetrized sets and condensers lie on the Riemann surface of the inverse function of a Chebyshev polynomial. As applications, Hayman's well-known results for nonvanishing $p$-valent holomorphic functions are supplemented as well as results for $p$-valent functions in a disc which have a zero of order $p$ at the origin. Bibliography: 20 titles.
Keywords: circular symmetrization, capacity of a condenser, Riemann surface, $p$-valent function, Chebyshev polynomial.
@article{SM_2012_203_7_a3,
     author = {V. N. Dubinin},
     title = {A new version of circular symmetrization with applications to $p$-valent functions},
     journal = {Sbornik. Mathematics},
     pages = {996--1011},
     publisher = {mathdoc},
     volume = {203},
     number = {7},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - A new version of circular symmetrization with applications to $p$-valent functions
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 996
EP  - 1011
VL  - 203
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/
LA  - en
ID  - SM_2012_203_7_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T A new version of circular symmetrization with applications to $p$-valent functions
%J Sbornik. Mathematics
%D 2012
%P 996-1011
%V 203
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/
%G en
%F SM_2012_203_7_a3
V. N. Dubinin. A new version of circular symmetrization with applications to $p$-valent functions. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 996-1011. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a3/