The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 950-975

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the least type of entire functions of order $\rho\in(0,1)$ all of whose zeros lie on the same ray and have the prescribed upper and lower averaged $\rho$-densities is solved. A complete investigation of the value of the extremal type is carried out, including a description of its asymptotic behaviour. Bibliography: 14 titles.
Keywords: extremal type of an entire function, upper and lower averaged density of zeros.
@article{SM_2012_203_7_a1,
     author = {G. G. Braichev},
     title = {The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities},
     journal = {Sbornik. Mathematics},
     pages = {950--975},
     publisher = {mathdoc},
     volume = {203},
     number = {7},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 950
EP  - 975
VL  - 203
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/
LA  - en
ID  - SM_2012_203_7_a1
ER  - 
%0 Journal Article
%A G. G. Braichev
%T The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
%J Sbornik. Mathematics
%D 2012
%P 950-975
%V 203
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/
%G en
%F SM_2012_203_7_a1
G. G. Braichev. The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 950-975. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/