The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 950-975
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the least type of entire functions of order $\rho\in(0,1)$ all of whose zeros lie on the same ray and have the prescribed upper and lower averaged $\rho$-densities is solved. A complete investigation of the value of the extremal type is carried out, including a description of its asymptotic behaviour.
Bibliography: 14 titles.
Keywords:
extremal type of an entire function, upper and lower averaged density of zeros.
@article{SM_2012_203_7_a1,
author = {G. G. Braichev},
title = {The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities},
journal = {Sbornik. Mathematics},
pages = {950--975},
publisher = {mathdoc},
volume = {203},
number = {7},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/}
}
TY - JOUR AU - G. G. Braichev TI - The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities JO - Sbornik. Mathematics PY - 2012 SP - 950 EP - 975 VL - 203 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/ LA - en ID - SM_2012_203_7_a1 ER -
%0 Journal Article %A G. G. Braichev %T The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities %J Sbornik. Mathematics %D 2012 %P 950-975 %V 203 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/ %G en %F SM_2012_203_7_a1
G. G. Braichev. The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 950-975. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/