The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 950-975 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the least type of entire functions of order $\rho\in(0,1)$ all of whose zeros lie on the same ray and have the prescribed upper and lower averaged $\rho$-densities is solved. A complete investigation of the value of the extremal type is carried out, including a description of its asymptotic behaviour. Bibliography: 14 titles.
Keywords: extremal type of an entire function, upper and lower averaged density of zeros.
@article{SM_2012_203_7_a1,
     author = {G. G. Braichev},
     title = {The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities},
     journal = {Sbornik. Mathematics},
     pages = {950--975},
     year = {2012},
     volume = {203},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 950
EP  - 975
VL  - 203
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/
LA  - en
ID  - SM_2012_203_7_a1
ER  - 
%0 Journal Article
%A G. G. Braichev
%T The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities
%J Sbornik. Mathematics
%D 2012
%P 950-975
%V 203
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/
%G en
%F SM_2012_203_7_a1
G. G. Braichev. The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 950-975. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a1/

[1] A. Yu. Popov, “The least possible type under the order $\rho1$ of canonical products with positive zeros of a given upper $\rho$-density”, Moscow Univ. Math. Bull., 60:1 (2005), 32–36 | MR | Zbl

[2] G. G. Braichev, V. B. Sherstyukov, “On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros”, Izv. Math., 75:1 (2011), 1–27 | DOI | MR | Zbl

[3] G. G. Braichev, V. B. Sherstyukov, “O roste tselykh funktsii s diskretno izmerimymi nulyami”, Matem. zametki, 91:5 (2012), 674–690

[4] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[5] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl

[6] B. N. Khabibullin, “On the type of entire and meromorphic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 293–301 | DOI | MR | Zbl

[7] P. Malliavin, L. A. Rubel, “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France, 89 (1961), 175–206 | MR | Zbl

[8] B. N. Khabibullin, Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2006

[9] A. Yu. Popov, “Completeness of exponential systems with real exponents of a prescribed under density in spaces of analytic functions”, Moscow Univ. Math. Bull., 54:5 (1999), 47–51 | MR | Zbl

[10] B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions”, Sb. Math., 200:2 (2009), 283–312 | DOI | MR | Zbl

[11] G. G. Braichev, V. B. Sherstyukov, “On an extremal problem related to the completeness of a system of exponentials in the disk”, Asian-Eur. J. Math., 1:1 (2008), 15–26 | DOI | MR | Zbl

[12] G. G. Braichev, Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005

[13] G. G. Braichev, O. V. Sherstyukova, “The greatest possible lower type of entire functions of order $\rho\in(0;1)$ with zeros of fixed $\rho$-densities”, Math. Notes, 90:1–2 (2011), 189–203 | DOI | Zbl

[14] G. G. Braichev, V. B. Sherstyukov, “Tochnye sootnosheniya mezhdu plotnostyami nulei tselykh funktsii konechnogo poryadka”, Mat. Stud., 30:2 (2008), 183–188 | MR | Zbl