Mots-clés : automorphism
@article{SM_2012_203_7_a0,
author = {Ivan Arzhantsev and M. G. Zaidenberg and K. G. Kuyumzhiyan},
title = {Flag varieties, toric varieties, and suspensions: {Three} instances of infinite transitivity},
journal = {Sbornik. Mathematics},
pages = {923--949},
year = {2012},
volume = {203},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/}
}
TY - JOUR AU - Ivan Arzhantsev AU - M. G. Zaidenberg AU - K. G. Kuyumzhiyan TI - Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity JO - Sbornik. Mathematics PY - 2012 SP - 923 EP - 949 VL - 203 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/ LA - en ID - SM_2012_203_7_a0 ER -
%0 Journal Article %A Ivan Arzhantsev %A M. G. Zaidenberg %A K. G. Kuyumzhiyan %T Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity %J Sbornik. Mathematics %D 2012 %P 923-949 %V 203 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/ %G en %F SM_2012_203_7_a0
Ivan Arzhantsev; M. G. Zaidenberg; K. G. Kuyumzhiyan. Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 923-949. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/
[1] A. Borel, “Les bouts des espaces homogènes de groupes de Lie”, Ann. of Math. (2), 58:3 (1953), 443–457 | DOI | MR | Zbl
[2] J. Tits, “Sur certaines classes d'espaces homogènes de groupes de Lie”, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in $8^\circ$, 29:3 (1955) | MR | Zbl
[3] L. Kramer, “Two-transitive Lie groups”, J. Reine Angew. Math., 563 (2003), 83–113 | DOI | MR | Zbl
[4] V. L. Popov, “Generically multiple transitive algebraic group actions”, Algebraic groups and homogeneous spaces (Mumbai, India, 2004), Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 481–523 | MR | Zbl
[5] J.-P. Rosay, W. Rudin, “Holomorphic maps from $\mathbb C^n$ to $\mathbb C^n$”, Trans. Amer. Math. Soc., 310:1 (1988), 47–86 | DOI | MR | Zbl
[6] E. Andersén, L. Lempert, “On the group of holomorphic automorphisms of $\mathbb C^n$”, Invent. Math., 110:1 (1992), 371–388 | DOI | MR | Zbl
[7] Sh. Kaliman, M. Zaidenberg, “Affine modifications and affine hypersurfaces with a very transitive automorphism group”, Transform. Groups, 4:1 (1999), 53–95 | DOI | MR | Zbl
[8] D. Varolin, “The density property for complex manifolds and geometric structures. II”, Internat. J. Math., 11:6 (2000), 837–847 | DOI | MR | Zbl
[9] J.-P. Rosay, “Automorphisms of $\mathbb C^n$, a survey of Andersén–Lempert theory and applications”, Complex geometric analysis in Pohang (Pohang, Korea, 1997), Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999, 131–145 | DOI | MR | Zbl
[10] F. Forstneric, “Interpolation by holomorphic automorphisms and embeddings in $\mathbb C^n$”, J. Geom. Anal., 9:1 (1999), 93–117 | DOI | MR | Zbl
[11] Á. Tóth, D. Varolin, “Holomorphic diffeomorphisms of semisimple homogeneous spaces”, Compos. Math., 142:5 (2006), 1308–1326 | DOI | MR | Zbl
[12] S. Kaliman, F. Kutzschebauch, “Density property for hypersurfaces $UV=P(\overline X)$”, Math. Z., 258:1 (2008), 115–131 | DOI | MR | Zbl
[13] S. Kaliman, F. Kutzschebauch, “On the present state of the Andersén–Lempert theory”, Affine algebraic geometry: The Russell Festschrift (Montreal, QC, Canada, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 85–122 | MR | Zbl
[14] I. Biswas, J. Huisman, “Rational real algebraic models of topological surfaces”, Doc. Math., 12 (2007), 549–567 | MR | Zbl
[15] J. Huisman, F. Mangolte, “The group of automorphisms of a real rational surface is $n$-transitive”, Bull. Lond. Math. Soc., 41:3 (2009), 563–568 | DOI | MR | Zbl
[16] J. Blanc, F. Mangolte, “Geometrically rational real conic bundles and very transitive actions”, Compos. Math., 147:1 (2011), 161–187 | DOI | MR | Zbl
[17] J. Huisman, F. Mangolte, “Automorphisms of real rational surfaces and weighted blow-up singularities”, Manuscripta Math., 132:1–2 (2010), 1–17 | DOI | MR | Zbl
[18] K. Kuyumzhiyan, F. Mangolte, “Infinitely transitive actions on real affine suspensions”, J. Pure Appl. Algebra., 216:10 (2012), 2106–2112 | DOI
[19] G. Freudenburg, “Algebraic theory of locally nilpotent derivations”, Invariant theory and algebraic transformation groups, v. VII, Encyclopaedia Math. Sci., 136, Springer-Verlag, Berlin, 2006 | MR | Zbl
[20] V. L. Popov, “On the Makar–Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | MR | Zbl
[21] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “Group actions on affine cones”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 123–164 | MR | Zbl
[22] A. Liendo, “Affine $\mathbb T$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425 | DOI | MR | Zbl
[23] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, arXiv: 1011.5375
[24] A. Liendo, “$G_a$-actions of fiber type on affine $\mathbb T$-varieties”, J. Algebra, 324:12 (2010), 3653–3665 | DOI | MR | Zbl
[25] A. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5, arXiv: 1108.5841
[26] È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl | Zbl
[27] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl
[28] D. N. Ahiezer, “Dense orbits with two ends”, Math. USSR-Izv., 11:2 (1977), 293–307 | DOI | MR | Zbl | Zbl
[29] A. T. Huckleberry, E. Oeljeklaus, “A characterization of complex homogeneous cones”, Math. Z., 170:2 (1980), 181–194 | DOI | MR | Zbl
[30] F. Lescure, “Élargissement du groupe d'automorphismes pour des variétés quasi-homogenes”, Math. Ann., 261:4 (1982), 455–462 | DOI | MR | Zbl
[31] V. Lakshmibai, K. N. Raghavan, Standard monomial theory. Invariant theoretic approach, Encyclopaedia Math. Sci., 137, Springer-Verlag, Berlin, 2008 | MR | Zbl
[32] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[33] D. A. Cox, J. B. Little, H. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl
[34] M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3:4 (1970), 507–588 | MR | Zbl
[35] V. L. Popov, E. B. Vinberg, “Linear algebraic groups, invariant theory”, Algebraic geometry. IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | MR | Zbl | Zbl
[36] H. Flenner, M. Zaidenberg, “Locally nilpotent derivations on affine surfaces with a $\mathbb C^*$-action”, Osaka J. Math., 42:4 (2005), 931–974 | MR | Zbl
[37] M. H. Gizatullin, “Affine surfaces which are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 5:4 (1971), 754–769 | DOI | MR | Zbl | Zbl
[38] V. L. Popov, “Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 7:5 (1973), 1039–1056 | DOI | MR | Zbl | Zbl
[39] L. Makar-Limanov, “On groups of automorphisms of a class of surfaces”, Israel J. Math., 69:2 (1990), 250–256 | DOI | MR | Zbl
[40] L. Makar-Limanov, “Locally nilpotent derivations on the surface $xy=p(z)$”, Proceedings of the third international algebra conference (Tainan, Taiwan, 2002), Kluwer Acad. Publ., Dordrecht, 2003, 215–219 | MR | Zbl
[41] D. Daigle, “On locally nilpotent derivations of $k[X_1,X_2,Y]/(\varphi(Y)-X_1X_2)$”, J. Pure Appl. Algebra, 181:2–3 (2003), 181–208 | DOI | MR | Zbl
[42] H. Flenner, S. Kaliman, M. Zaidenberg, “Uniqueness of $\mathbb C^*$- and $\mathbb C_+$-actions on Gizatullin surfaces”, Transform. Groups, 13:2 (2008), 305–354 | DOI | MR | Zbl