Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 923-949 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We say that a group $G$ acts infinitely transitively on a set $X$ if for every $m\in\mathbb N$ the induced diagonal action of $G$ is transitive on the cartesian $m$th power $X^m\setminus\Delta$ with the diagonals removed. We describe three classes of affine algebraic varieties such that their automorphism groups act infinitely transitively on their smooth loci. The first class consists of normal affine cones over flag varieties, the second of nondegenerate affine toric varieties, and the third of iterated suspensions over affine varieties with infinitely transitive automorphism groups. Bibliography: 42 titles.
Keywords: affine algebraic variety, infinite transitivity, derivation.
Mots-clés : automorphism
@article{SM_2012_203_7_a0,
     author = {Ivan Arzhantsev and M. G. Zaidenberg and K. G. Kuyumzhiyan},
     title = {Flag varieties, toric varieties, and suspensions: {Three} instances of infinite transitivity},
     journal = {Sbornik. Mathematics},
     pages = {923--949},
     year = {2012},
     volume = {203},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/}
}
TY  - JOUR
AU  - Ivan Arzhantsev
AU  - M. G. Zaidenberg
AU  - K. G. Kuyumzhiyan
TI  - Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 923
EP  - 949
VL  - 203
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/
LA  - en
ID  - SM_2012_203_7_a0
ER  - 
%0 Journal Article
%A Ivan Arzhantsev
%A M. G. Zaidenberg
%A K. G. Kuyumzhiyan
%T Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity
%J Sbornik. Mathematics
%D 2012
%P 923-949
%V 203
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/
%G en
%F SM_2012_203_7_a0
Ivan Arzhantsev; M. G. Zaidenberg; K. G. Kuyumzhiyan. Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 923-949. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a0/

[1] A. Borel, “Les bouts des espaces homogènes de groupes de Lie”, Ann. of Math. (2), 58:3 (1953), 443–457 | DOI | MR | Zbl

[2] J. Tits, “Sur certaines classes d'espaces homogènes de groupes de Lie”, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in $8^\circ$, 29:3 (1955) | MR | Zbl

[3] L. Kramer, “Two-transitive Lie groups”, J. Reine Angew. Math., 563 (2003), 83–113 | DOI | MR | Zbl

[4] V. L. Popov, “Generically multiple transitive algebraic group actions”, Algebraic groups and homogeneous spaces (Mumbai, India, 2004), Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 481–523 | MR | Zbl

[5] J.-P. Rosay, W. Rudin, “Holomorphic maps from $\mathbb C^n$ to $\mathbb C^n$”, Trans. Amer. Math. Soc., 310:1 (1988), 47–86 | DOI | MR | Zbl

[6] E. Andersén, L. Lempert, “On the group of holomorphic automorphisms of $\mathbb C^n$”, Invent. Math., 110:1 (1992), 371–388 | DOI | MR | Zbl

[7] Sh. Kaliman, M. Zaidenberg, “Affine modifications and affine hypersurfaces with a very transitive automorphism group”, Transform. Groups, 4:1 (1999), 53–95 | DOI | MR | Zbl

[8] D. Varolin, “The density property for complex manifolds and geometric structures. II”, Internat. J. Math., 11:6 (2000), 837–847 | DOI | MR | Zbl

[9] J.-P. Rosay, “Automorphisms of $\mathbb C^n$, a survey of Andersén–Lempert theory and applications”, Complex geometric analysis in Pohang (Pohang, Korea, 1997), Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999, 131–145 | DOI | MR | Zbl

[10] F. Forstneric, “Interpolation by holomorphic automorphisms and embeddings in $\mathbb C^n$”, J. Geom. Anal., 9:1 (1999), 93–117 | DOI | MR | Zbl

[11] Á. Tóth, D. Varolin, “Holomorphic diffeomorphisms of semisimple homogeneous spaces”, Compos. Math., 142:5 (2006), 1308–1326 | DOI | MR | Zbl

[12] S. Kaliman, F. Kutzschebauch, “Density property for hypersurfaces $UV=P(\overline X)$”, Math. Z., 258:1 (2008), 115–131 | DOI | MR | Zbl

[13] S. Kaliman, F. Kutzschebauch, “On the present state of the Andersén–Lempert theory”, Affine algebraic geometry: The Russell Festschrift (Montreal, QC, Canada, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 85–122 | MR | Zbl

[14] I. Biswas, J. Huisman, “Rational real algebraic models of topological surfaces”, Doc. Math., 12 (2007), 549–567 | MR | Zbl

[15] J. Huisman, F. Mangolte, “The group of automorphisms of a real rational surface is $n$-transitive”, Bull. Lond. Math. Soc., 41:3 (2009), 563–568 | DOI | MR | Zbl

[16] J. Blanc, F. Mangolte, “Geometrically rational real conic bundles and very transitive actions”, Compos. Math., 147:1 (2011), 161–187 | DOI | MR | Zbl

[17] J. Huisman, F. Mangolte, “Automorphisms of real rational surfaces and weighted blow-up singularities”, Manuscripta Math., 132:1–2 (2010), 1–17 | DOI | MR | Zbl

[18] K. Kuyumzhiyan, F. Mangolte, “Infinitely transitive actions on real affine suspensions”, J. Pure Appl. Algebra., 216:10 (2012), 2106–2112 | DOI

[19] G. Freudenburg, “Algebraic theory of locally nilpotent derivations”, Invariant theory and algebraic transformation groups, v. VII, Encyclopaedia Math. Sci., 136, Springer-Verlag, Berlin, 2006 | MR | Zbl

[20] V. L. Popov, “On the Makar–Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | MR | Zbl

[21] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “Group actions on affine cones”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 123–164 | MR | Zbl

[22] A. Liendo, “Affine $\mathbb T$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425 | DOI | MR | Zbl

[23] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, arXiv: 1011.5375

[24] A. Liendo, “$G_a$-actions of fiber type on affine $\mathbb T$-varieties”, J. Algebra, 324:12 (2010), 3653–3665 | DOI | MR | Zbl

[25] A. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5, arXiv: 1108.5841

[26] È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl | Zbl

[27] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl

[28] D. N. Ahiezer, “Dense orbits with two ends”, Math. USSR-Izv., 11:2 (1977), 293–307 | DOI | MR | Zbl | Zbl

[29] A. T. Huckleberry, E. Oeljeklaus, “A characterization of complex homogeneous cones”, Math. Z., 170:2 (1980), 181–194 | DOI | MR | Zbl

[30] F. Lescure, “Élargissement du groupe d'automorphismes pour des variétés quasi-homogenes”, Math. Ann., 261:4 (1982), 455–462 | DOI | MR | Zbl

[31] V. Lakshmibai, K. N. Raghavan, Standard monomial theory. Invariant theoretic approach, Encyclopaedia Math. Sci., 137, Springer-Verlag, Berlin, 2008 | MR | Zbl

[32] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[33] D. A. Cox, J. B. Little, H. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl

[34] M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3:4 (1970), 507–588 | MR | Zbl

[35] V. L. Popov, E. B. Vinberg, “Linear algebraic groups, invariant theory”, Algebraic geometry. IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | MR | Zbl | Zbl

[36] H. Flenner, M. Zaidenberg, “Locally nilpotent derivations on affine surfaces with a $\mathbb C^*$-action”, Osaka J. Math., 42:4 (2005), 931–974 | MR | Zbl

[37] M. H. Gizatullin, “Affine surfaces which are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 5:4 (1971), 754–769 | DOI | MR | Zbl | Zbl

[38] V. L. Popov, “Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 7:5 (1973), 1039–1056 | DOI | MR | Zbl | Zbl

[39] L. Makar-Limanov, “On groups of automorphisms of a class of surfaces”, Israel J. Math., 69:2 (1990), 250–256 | DOI | MR | Zbl

[40] L. Makar-Limanov, “Locally nilpotent derivations on the surface $xy=p(z)$”, Proceedings of the third international algebra conference (Tainan, Taiwan, 2002), Kluwer Acad. Publ., Dordrecht, 2003, 215–219 | MR | Zbl

[41] D. Daigle, “On locally nilpotent derivations of $k[X_1,X_2,Y]/(\varphi(Y)-X_1X_2)$”, J. Pure Appl. Algebra, 181:2–3 (2003), 181–208 | DOI | MR | Zbl

[42] H. Flenner, S. Kaliman, M. Zaidenberg, “Uniqueness of $\mathbb C^*$- and $\mathbb C_+$-actions on Gizatullin surfaces”, Transform. Groups, 13:2 (2008), 305–354 | DOI | MR | Zbl