Asymptotic estimates for the kernel of the semigroup generated by a~perturbation of the biharmonic operator by a~potential
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 893-921
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic formulae and estimates for the integral kernel of the semigroup generated by a perturbation of the bi-Laplacian by a potential are established by the parametrix method. These formulae are found using an approach which is conceptually close to the probabilistic approach used to calculate the coefficients of a short-time expansion for the heat kernel and based on the representation of this kernel as a Wiener integral. As an application, an asymptotic formula for the regularized trace of the operator semigroup under consideration
is found.
Bibliography: 19 titles.
Keywords:
operator semigroup, parametrix expansion, Born approximation, regularized trace, short-time asymptotics.
@article{SM_2012_203_6_a5,
author = {S. A. Stepin},
title = {Asymptotic estimates for the kernel of the semigroup generated by a~perturbation of the biharmonic operator by a~potential},
journal = {Sbornik. Mathematics},
pages = {893--921},
publisher = {mathdoc},
volume = {203},
number = {6},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/}
}
TY - JOUR AU - S. A. Stepin TI - Asymptotic estimates for the kernel of the semigroup generated by a~perturbation of the biharmonic operator by a~potential JO - Sbornik. Mathematics PY - 2012 SP - 893 EP - 921 VL - 203 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/ LA - en ID - SM_2012_203_6_a5 ER -
%0 Journal Article %A S. A. Stepin %T Asymptotic estimates for the kernel of the semigroup generated by a~perturbation of the biharmonic operator by a~potential %J Sbornik. Mathematics %D 2012 %P 893-921 %V 203 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/ %G en %F SM_2012_203_6_a5
S. A. Stepin. Asymptotic estimates for the kernel of the semigroup generated by a~perturbation of the biharmonic operator by a~potential. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 893-921. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/