Asymptotic estimates for the kernel of the semigroup generated by a perturbation of the biharmonic operator by a potential
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 893-921 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic formulae and estimates for the integral kernel of the semigroup generated by a perturbation of the bi-Laplacian by a potential are established by the parametrix method. These formulae are found using an approach which is conceptually close to the probabilistic approach used to calculate the coefficients of a short-time expansion for the heat kernel and based on the representation of this kernel as a Wiener integral. As an application, an asymptotic formula for the regularized trace of the operator semigroup under consideration is found. Bibliography: 19 titles.
Keywords: operator semigroup, parametrix expansion, Born approximation, regularized trace, short-time asymptotics.
@article{SM_2012_203_6_a5,
     author = {S. A. Stepin},
     title = {Asymptotic estimates for the kernel of the semigroup generated by a~perturbation of the biharmonic operator by a~potential},
     journal = {Sbornik. Mathematics},
     pages = {893--921},
     year = {2012},
     volume = {203},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Asymptotic estimates for the kernel of the semigroup generated by a perturbation of the biharmonic operator by a potential
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 893
EP  - 921
VL  - 203
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/
LA  - en
ID  - SM_2012_203_6_a5
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Asymptotic estimates for the kernel of the semigroup generated by a perturbation of the biharmonic operator by a potential
%J Sbornik. Mathematics
%D 2012
%P 893-921
%V 203
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/
%G en
%F SM_2012_203_6_a5
S. A. Stepin. Asymptotic estimates for the kernel of the semigroup generated by a perturbation of the biharmonic operator by a potential. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 893-921. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a5/

[1] M. V. Fedoryuk, “Asimptotika funktsii Grina pri $t\to+0$, $x\to\infty$ dlya korrektnykh po Petrovskomu uravnenii s postoyannymi koeffitsientami i klassy korrektnosti resheniya zadachi Koshi”, Matem. sb., 62(104):4 (1963), 397–468 | MR | Zbl

[2] M. A. Evgrafov, M. M. Postnikov, “Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients”, Math. USSR-Sb., 11:1 (1970), 1–24 | DOI | MR | Zbl

[3] S. G. Gindikin, M. V. Fedorjuk, “Asymptotics of the fundamental solution of a Petrovskiǐ parabolic equation with constant coefficients”, Math. USSR-Sb., 20:4 (1973), 519–542 | DOI | MR | Zbl

[4] M. A. Evgrafov, “Estimates of the fundamental solution of a parabolic equation”, Math. USSR-Sb., 40:3 (1981), 305–324 | DOI | MR | Zbl

[5] M. M. Postnikov, “On the asymptotics of the Green functions for parabolic equations”, Proc. Steklov Inst. Math., 236 (2002), 260–272 | MR | Zbl

[6] S. A. Stepin, “Parametrix, kernel asymptotics, and regularized trace for the diffusion semigroup”, Math. USSR-Sb., 77:3 (2008), 424–427 | DOI | MR | Zbl

[7] S. A. Stepin, “Schwartz kernel asymptotics and regularized traces of diffusion semigroups”, Funct. Anal. Appl., 44:1 (2010), 76–80 | DOI | MR

[8] R. S. Ismagilov, A. G. Kostyuchenko, “Perturbation of the spectrum of a differential operator under a bounded perturbation of the potential”, Funct. Anal. Appl., 43:3 (2009), 208–216 | DOI | MR

[9] R. M. Martirosyan, “O spektre nekotorykh nesamosopryazhennykh operatorov”, Izv. AN SSSR. Ser. matem., 27:3 (1963), 677–700 | MR | Zbl

[10] A. A. Arsen'ev, “The asymptotic spectral function of the Schrödinger equation”, U.S.S.R. Comput. Math. Math. Phys., 7:6 (1967), 113–138 | DOI | MR | Zbl | Zbl

[11] A. G. Kostyuchenko, “Asimptoticheskoe povedenie spektralnoi funktsii samosopryazhennykh ellipticheskikh operatorov”, Chetvertaya matematicheskaya shkola (Katsiveli, Ukraina, 1966), Kiev, 1968, 42–117 | Zbl

[12] S. A. Molchanov, “Diffusion processes and Riemannian geometry”, Russian Math. Surveys, 30:1 (1975), 1–63 | DOI | MR | Zbl | Zbl

[13] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[14] S. D. Eidel'man, Parabolic systems, North-Holland, Amsterdam–London, 1969 | MR | MR | Zbl

[15] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[16] S. A. Stepin, A. G. Tarasov, “The resonance spectrum of Schrödinger operators with rapidly decaying potentials”, Sb. Math., 200:12 (2009), 1847–1880 | DOI | MR | Zbl

[17] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl | Zbl

[18] Yu. L. Dalecky, S. V. Fomin, Measures and differential equations in infinite-dimensional space, Math. Appl. (Soviet Ser.), 76, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[19] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl