On additive shifts of multiplicative subgroups
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for an arbitrary subgroup $R\subseteq\mathbb Z/p\mathbb Z$ and any distinct nonzero elements $\mu_1,\dots,\mu_k$ we have
$$
\bigl|R\cap(R+\mu_1)\cap\dots\cap(R+\mu_k)\bigr|
\ll_k|R|^{{1}/{2}+\alpha_k}
$$
under the condition that $1\ll_k|R|\ll_kp^{1-\beta_k}$, where $\{\alpha_k\}$, $\{\beta_k\}$ are some
sequences of positive numbers such that $\alpha_k,\beta_k\to0$ as $k\to\infty$. Furthermore, it is shown that the inequality $|R\pm R|\gg|R|^{5/3}\log^{-1/2}|R|$ holds for any subgroup $R$ such that $|R|\ll p^{1/2}$.
Bibliography: 25 titles.
Keywords:
multiplicative subgroups, Stepanov's method, additive combinatorics.
@article{SM_2012_203_6_a3,
author = {I. V. Vyugin and I. D. Shkredov},
title = {On additive shifts of multiplicative subgroups},
journal = {Sbornik. Mathematics},
pages = {844--863},
publisher = {mathdoc},
volume = {203},
number = {6},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/}
}
I. V. Vyugin; I. D. Shkredov. On additive shifts of multiplicative subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/