On additive shifts of multiplicative subgroups
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for an arbitrary subgroup $R\subseteq\mathbb Z/p\mathbb Z$ and any distinct nonzero elements $\mu_1,\dots,\mu_k$ we have $$ \bigl|R\cap(R+\mu_1)\cap\dots\cap(R+\mu_k)\bigr| \ll_k|R|^{{1}/{2}+\alpha_k} $$ under the condition that $1\ll_k|R|\ll_kp^{1-\beta_k}$, where $\{\alpha_k\}$, $\{\beta_k\}$ are some sequences of positive numbers such that $\alpha_k,\beta_k\to0$ as $k\to\infty$. Furthermore, it is shown that the inequality $|R\pm R|\gg|R|^{5/3}\log^{-1/2}|R|$ holds for any subgroup $R$ such that $|R|\ll p^{1/2}$. Bibliography: 25 titles.
Keywords: multiplicative subgroups, Stepanov's method, additive combinatorics.
@article{SM_2012_203_6_a3,
     author = {I. V. Vyugin and I. D. Shkredov},
     title = {On additive shifts of multiplicative subgroups},
     journal = {Sbornik. Mathematics},
     pages = {844--863},
     year = {2012},
     volume = {203},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/}
}
TY  - JOUR
AU  - I. V. Vyugin
AU  - I. D. Shkredov
TI  - On additive shifts of multiplicative subgroups
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 844
EP  - 863
VL  - 203
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/
LA  - en
ID  - SM_2012_203_6_a3
ER  - 
%0 Journal Article
%A I. V. Vyugin
%A I. D. Shkredov
%T On additive shifts of multiplicative subgroups
%J Sbornik. Mathematics
%D 2012
%P 844-863
%V 203
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/
%G en
%F SM_2012_203_6_a3
I. V. Vyugin; I. D. Shkredov. On additive shifts of multiplicative subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/

[1] J. Bourgain, M.-C. Chang, “Exponential sums estimates over subgroups and almost subgroups of $\mathbb Z_Q^*$, where $Q$ is composite with few prime factors”, Geom. Funct. Anal., 16:2 (2006), 327–366 | DOI | MR

[2] J. Bourgain, “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl

[3] J. Bourgain, A. A. Glibichuk, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums in fields of prime order”, J. London Math. Soc. (2), 73:2 (2006), 380–398 | DOI | MR | Zbl

[4] J. Bourgain, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris, 337:2 (2003), 75–80 | DOI | MR | Zbl

[5] T. Cochrain, C. Pinner, “Sum-product estimates applied to Waring's problem mod $p$”, Integers, 8:1 (2008), A46 | MR | Zbl

[6] T. Cochrain, C. Pinner, “Stepanov's method applied to binomial exponential sums”, Q. J. Math., 54:3 (2003), 243–255 | DOI | MR | Zbl

[7] A. Garcia, J. F. Voloch, “Fermat curves over finite fields”, J. Number Theory, 30:3 (1988), 345–356 | DOI | MR | Zbl

[8] D. R. Heath-Brown, S. Konyagin, “New bounds for Gauss sums derived from $k$-th powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl

[9] S. V. Konyagin, I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Math., 136, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[10] A. A. Glibichuk, S. V. Konyagin, “Additive properties of product sets in fields of prime order”, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 279–286 | MR | Zbl

[11] A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdös–Graham problem”, Math. Notes, 79:3 (2006), 356–365 | DOI | MR | Zbl

[12] S. V. Konyagin, “Otsenki dlya trigonometricheskikh summ na podgruppy i dlya gaussovykh summ”, IV internats. konf. “Sovremennye problemy teorii chisel i ee prilozheniya”, Aktualnye problemy. Chast 3 (Tula, 2001), Izd-vo Mosk. un-ta, M., 2002, 86–114 | MR | Zbl

[13] T. Schoen, I. D. Shkredov, “Additive properties of multiplicative subgroups of $\mathbb F_p$”, Q. J. Math., 2011, 1–10 | DOI

[14] I. D. Shkredov, “Some additive problems connected with exponential functions”, Russian Math. Surveys, 58:4 (2003), 798–799 | DOI | MR | Zbl

[15] S. Yekhanin, “A note on plane pointless curves”, Finite Fields Appl., 13:2 (2007), 418–422 | DOI | MR | Zbl

[16] S. A. Stepanov, “On the number of points of a hyperelliptic curve over a finite prime field”, Math. USSR-Izv., 3:5 (1969), 1103–1114 | DOI | MR | Zbl | Zbl

[17] N. H. Katz, P. Koester, “On additive doubling and energy”, SIAM J. Discrete Math., 24:4 (2010), 1684–1693 | DOI | MR | Zbl

[18] T. Sanders, On a non-abelian Balog–Szemeredi-type lemma, arXiv: 0912.0306

[19] T. Sanders, Structure in sets with logarithmic doubling, arXiv: 1002.1552

[20] T. Sanders, On Roth's theorem on progressions, arXiv: 1011.0104

[21] T. Schoen, “Near optimal bounds in Freiman's theorem”, Duke Math. J. (to appear)

[22] W. Rudin, Fourier analysis on groups, Wiley, New York, 1990 | MR | Zbl

[23] T. Tao, V. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[24] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[25] M. Rudnev, An improved estimate on sums of product sets, arXiv: 0805.2696