On additive shifts of multiplicative subgroups
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for an arbitrary subgroup $R\subseteq\mathbb Z/p\mathbb Z$ and any distinct nonzero elements $\mu_1,\dots,\mu_k$ we have $$ \bigl|R\cap(R+\mu_1)\cap\dots\cap(R+\mu_k)\bigr| \ll_k|R|^{{1}/{2}+\alpha_k} $$ under the condition that $1\ll_k|R|\ll_kp^{1-\beta_k}$, where $\{\alpha_k\}$$\{\beta_k\}$ are some sequences of positive numbers such that $\alpha_k,\beta_k\to0$ as $k\to\infty$. Furthermore, it is shown that the inequality $|R\pm R|\gg|R|^{5/3}\log^{-1/2}|R|$ holds for any subgroup $R$ such that $|R|\ll p^{1/2}$. Bibliography: 25 titles.
Keywords: multiplicative subgroups, Stepanov's method, additive combinatorics.
@article{SM_2012_203_6_a3,
     author = {I. V. Vyugin and I. D. Shkredov},
     title = {On additive shifts of multiplicative subgroups},
     journal = {Sbornik. Mathematics},
     pages = {844--863},
     publisher = {mathdoc},
     volume = {203},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/}
}
TY  - JOUR
AU  - I. V. Vyugin
AU  - I. D. Shkredov
TI  - On additive shifts of multiplicative subgroups
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 844
EP  - 863
VL  - 203
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/
LA  - en
ID  - SM_2012_203_6_a3
ER  - 
%0 Journal Article
%A I. V. Vyugin
%A I. D. Shkredov
%T On additive shifts of multiplicative subgroups
%J Sbornik. Mathematics
%D 2012
%P 844-863
%V 203
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/
%G en
%F SM_2012_203_6_a3
I. V. Vyugin; I. D. Shkredov. On additive shifts of multiplicative subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/