@article{SM_2012_203_6_a3,
author = {I. V. Vyugin and I. D. Shkredov},
title = {On additive shifts of multiplicative subgroups},
journal = {Sbornik. Mathematics},
pages = {844--863},
year = {2012},
volume = {203},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/}
}
I. V. Vyugin; I. D. Shkredov. On additive shifts of multiplicative subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 844-863. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a3/
[1] J. Bourgain, M.-C. Chang, “Exponential sums estimates over subgroups and almost subgroups of $\mathbb Z_Q^*$, where $Q$ is composite with few prime factors”, Geom. Funct. Anal., 16:2 (2006), 327–366 | DOI | MR
[2] J. Bourgain, “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl
[3] J. Bourgain, A. A. Glibichuk, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums in fields of prime order”, J. London Math. Soc. (2), 73:2 (2006), 380–398 | DOI | MR | Zbl
[4] J. Bourgain, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris, 337:2 (2003), 75–80 | DOI | MR | Zbl
[5] T. Cochrain, C. Pinner, “Sum-product estimates applied to Waring's problem mod $p$”, Integers, 8:1 (2008), A46 | MR | Zbl
[6] T. Cochrain, C. Pinner, “Stepanov's method applied to binomial exponential sums”, Q. J. Math., 54:3 (2003), 243–255 | DOI | MR | Zbl
[7] A. Garcia, J. F. Voloch, “Fermat curves over finite fields”, J. Number Theory, 30:3 (1988), 345–356 | DOI | MR | Zbl
[8] D. R. Heath-Brown, S. Konyagin, “New bounds for Gauss sums derived from $k$-th powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl
[9] S. V. Konyagin, I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Math., 136, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[10] A. A. Glibichuk, S. V. Konyagin, “Additive properties of product sets in fields of prime order”, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 279–286 | MR | Zbl
[11] A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdös–Graham problem”, Math. Notes, 79:3 (2006), 356–365 | DOI | MR | Zbl
[12] S. V. Konyagin, “Otsenki dlya trigonometricheskikh summ na podgruppy i dlya gaussovykh summ”, IV internats. konf. “Sovremennye problemy teorii chisel i ee prilozheniya”, Aktualnye problemy. Chast 3 (Tula, 2001), Izd-vo Mosk. un-ta, M., 2002, 86–114 | MR | Zbl
[13] T. Schoen, I. D. Shkredov, “Additive properties of multiplicative subgroups of $\mathbb F_p$”, Q. J. Math., 2011, 1–10 | DOI
[14] I. D. Shkredov, “Some additive problems connected with exponential functions”, Russian Math. Surveys, 58:4 (2003), 798–799 | DOI | MR | Zbl
[15] S. Yekhanin, “A note on plane pointless curves”, Finite Fields Appl., 13:2 (2007), 418–422 | DOI | MR | Zbl
[16] S. A. Stepanov, “On the number of points of a hyperelliptic curve over a finite prime field”, Math. USSR-Izv., 3:5 (1969), 1103–1114 | DOI | MR | Zbl | Zbl
[17] N. H. Katz, P. Koester, “On additive doubling and energy”, SIAM J. Discrete Math., 24:4 (2010), 1684–1693 | DOI | MR | Zbl
[18] T. Sanders, On a non-abelian Balog–Szemeredi-type lemma, arXiv: 0912.0306
[19] T. Sanders, Structure in sets with logarithmic doubling, arXiv: 1002.1552
[20] T. Sanders, On Roth's theorem on progressions, arXiv: 1011.0104
[21] T. Schoen, “Near optimal bounds in Freiman's theorem”, Duke Math. J. (to appear)
[22] W. Rudin, Fourier analysis on groups, Wiley, New York, 1990 | MR | Zbl
[23] T. Tao, V. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[24] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009
[25] M. Rudnev, An improved estimate on sums of product sets, arXiv: 0805.2696