Isomonodromic deformations of systems of linear differential equations with irregular singularities
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 826-843 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An isomonodromic deformation of a linear system of differential equations with irregular singularities is considered. A theorem on the general form of a differential 1-form describing such a deformation is proved. Bibliography: 21 titles.
Keywords: irregular singularities, Stokes data, deformation 1-form.
Mots-clés : isomonodromic deformation
@article{SM_2012_203_6_a2,
     author = {Yu. P. Bibilo},
     title = {Isomonodromic deformations of systems of linear differential equations with irregular singularities},
     journal = {Sbornik. Mathematics},
     pages = {826--843},
     year = {2012},
     volume = {203},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a2/}
}
TY  - JOUR
AU  - Yu. P. Bibilo
TI  - Isomonodromic deformations of systems of linear differential equations with irregular singularities
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 826
EP  - 843
VL  - 203
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a2/
LA  - en
ID  - SM_2012_203_6_a2
ER  - 
%0 Journal Article
%A Yu. P. Bibilo
%T Isomonodromic deformations of systems of linear differential equations with irregular singularities
%J Sbornik. Mathematics
%D 2012
%P 826-843
%V 203
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a2/
%G en
%F SM_2012_203_6_a2
Yu. P. Bibilo. Isomonodromic deformations of systems of linear differential equations with irregular singularities. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 826-843. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a2/

[1] B. Riemann, Gesammelte mathematische Werke und wissenschaftlicher Nachlass, Teubner, Leipzig, 1892 | MR | Zbl

[2] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau$-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR | Zbl

[3] A. A. Bolibruch, S. Malek, C. Mitschi, “On the generalized Riemann–Hilbert problem with irregular singularities”, Expo. Math., 24:3 (2006), 235–272 | DOI | MR | Zbl

[4] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. II. Proper invariants”, Funkcial. Ekvac., 22:3 (1979), 257–283 | MR | Zbl

[5] Y. Sibuya, “Stokes phenomena”, Bull. Amer. Math. Soc., 83:5 (1977), 1075–1077 | DOI | MR | Zbl

[6] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann–Hilbert approach, Amer. Math. Soc., 128, Princeton Univ. Press, Providence, RI, 2006 | MR | Zbl

[7] M. V. Fedoryuk, “Isomonodromy deformations of equations with irregular singularities”, Math. USSR-Sb., 71:2 (1992), 463–479 | DOI | MR | Zbl | Zbl

[8] I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752 | MR | Zbl

[9] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[10] A. A. Bolibrukh, “Differential equations with meromorphic coefficients”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), 13–43 | DOI | MR

[11] A. A. Bolibrukh, “On isomonodromic confluences of Fuchsian singularities”, Proc. Steklov Inst. Math., 221 (1998), 117–132 | MR | Zbl

[12] A. A. Bolibrukh, “Regular singular points as isomonodromic confluences of Fuchsian singular points”, Russian Math. Surveys, 56:4 (2001), 745–746 | DOI | MR | Zbl

[13] D. V. Anosov, “Concerning the definition of isomonodromic deformation of Fuchsian systems”, Ulmer Seminaire Euber Funktionalysis und Differentialgleichungen, 2 (1997), 1–12

[14] A. Bolibruch, “Inverse problems for linear differential equations with meromorphic coefficients”, Isomonodromic deformations and applications in physics (Montreal, QC, Canada, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 3–25 | MR | Zbl

[15] W. Wasow, Asymptotic expansions for ordinary differential equations, Wiley, New York–London–Sydney, 1965 | MR | Zbl | Zbl

[16] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22:2 (1979), 197–221 | MR | Zbl

[17] R. R. Gontsov, “Refined Fuchs inequalities for systems of linear differential equations”, Izv. Math., 68:2 (2004), 259–272 | DOI | MR | Zbl

[18] R. Schäfke, “Formal fundamental solutions of irregular singular differential equations depending upon parameters”, J. Dynam. Control Systems, 7:4 (2001), 501–533 | DOI | MR | Zbl

[19] B. Malgrange, “Deformations of differential systems. II”, J. Ramanujan Math. Soc., 1:1–2 (1986), 3–15 | MR | Zbl

[20] V. Heu, “Universal isomonodromic deformations of meromorphic rank 2 connections on curves”, Ann. Inst. Fourier (Grenoble), 60:2 (2010), 515–549 | DOI | MR | Zbl

[21] M. Bertola, M. Y. Mo, “Isomonodromic deformation of resonant rational connections”, IMRP Int. Math. Res. Pap., 2005, no. 11, 565–635 | DOI | MR | Zbl