Some properties of the sum of the moduli of the terms of a grouped trigonometric series
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 798-825 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a trigonometric series grouped in a certain way and such that the coefficients are monotonic in each of the groups, the absolute convergence and properties of the sums of moduli of the terms thereof are examined. Necessary and sufficient conditions for this sum to lie in $L^p_{2\pi}$-spaces, $p\in[1,\infty]$, are obtained, and upper and lower bounds in terms for the coefficients of the series are established. Bibliography: 9 titles.
Keywords: absolute convergence, grouped trigonometric series.
@article{SM_2012_203_6_a1,
     author = {A. S. Belov},
     title = {Some properties of the sum of the moduli of the terms of a~grouped trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {798--825},
     year = {2012},
     volume = {203},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Some properties of the sum of the moduli of the terms of a grouped trigonometric series
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 798
EP  - 825
VL  - 203
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a1/
LA  - en
ID  - SM_2012_203_6_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T Some properties of the sum of the moduli of the terms of a grouped trigonometric series
%J Sbornik. Mathematics
%D 2012
%P 798-825
%V 203
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a1/
%G en
%F SM_2012_203_6_a1
A. S. Belov. Some properties of the sum of the moduli of the terms of a grouped trigonometric series. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 798-825. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a1/

[1] A. S. Belov, “O summe modulei chlenov sgruppipovannogo tpigonometpicheskogo pyada s monotonnymi koeffitsientami”, Vestn. Ivanovskogo gos. un-ta. Sep. Biologiya. Khimiya. Fizika. Matem., 2006, no. 3, 107–121

[2] A. S. Belov, S. A. Telyakovskii, “Refinement of the Dirichlet–Jordan and Young's theorems on Fourier series of functions of bounded variation”, Sb. Math., 198:6 (2007), 777–791 | DOI | MR | Zbl

[3] S. A. Telyakovskii, “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl

[4] S. A. Telyakovskii, “Some properties of Fourier series of functions with bounded variation. II”, Function theory, Proc. Steklov Inst. Math., Suppl. 2, MAIK Nauka, Moscow, 2005, 188–195 | MR | Zbl

[5] R. M. Trigub, “A note on the paper of S. A. Telyakovskii: “Some properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR

[6] A. S. Belov, “Otsenki norm tpigonometpicheskikh polinomov na intervalakh i mnozhestvakh”, Anal. Math., 5:2 (1979), 89–117 | DOI | MR | Zbl

[7] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. II, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl

[8] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl

[9] A. Zygmund, Trigonometric series, v. I, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl