On Palais universal $G$-spaces and isovariant absolute extensors
Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 769-797 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the theory of isovariant absolute extensors which were earlier introduced by R. Palais. The existence of injective objects of the isovariant category is proved and their properties are studied. Bibliography: 23 items.
Keywords: classifying $G$-spaces, isovariant absolute extensor.
@article{SM_2012_203_6_a0,
     author = {S. M. Ageev},
     title = {On {Palais} universal $G$-spaces and isovariant absolute extensors},
     journal = {Sbornik. Mathematics},
     pages = {769--797},
     year = {2012},
     volume = {203},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_6_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - On Palais universal $G$-spaces and isovariant absolute extensors
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 769
EP  - 797
VL  - 203
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_6_a0/
LA  - en
ID  - SM_2012_203_6_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T On Palais universal $G$-spaces and isovariant absolute extensors
%J Sbornik. Mathematics
%D 2012
%P 769-797
%V 203
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2012_203_6_a0/
%G en
%F SM_2012_203_6_a0
S. M. Ageev. On Palais universal $G$-spaces and isovariant absolute extensors. Sbornik. Mathematics, Tome 203 (2012) no. 6, pp. 769-797. http://geodesic.mathdoc.fr/item/SM_2012_203_6_a0/

[1] R. Palais, The classification of $G$-spaces, Mem. Amer. Math. Soc., no. 36, 1960 | MR | Zbl

[2] S. M. Ageev, D. Repovsh, “Zadacha o rasprostranenii nakryvayuschei gomotopii dlya kompaktnykh grupp preobrazovanii” (to appear)

[3] S. M. Ageev, “Classification of $G$-spaces”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 581–591 | DOI | MR | Zbl

[4] T. tom Dieck, Transformation groups, de Gruyter Stud. Math., 8, de Gruyter, Berlin–New York, 1987 | MR | Zbl

[5] T. tom Dieck, Transformation groups and representation theory, Springer-Verlag, Berlin, 1979 | MR | MR | Zbl | Zbl

[6] S. Waner, “A generalization of the cohomology of groups”, Proc. Amer. Math. Soc., 85:3 (1982), 469–474 | DOI | MR | Zbl

[7] S. Waner, “Mackey functors and $G$-cohomology”, Proc. Amer. Math. Soc., 90:4 (1984), 641–648 | DOI | MR | Zbl

[8] H. Toruńczyk, J. West, “The fine structure of $S^{1}/S^{1}$; a $Q$-manifold hyperspace localization of the integers”, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 439–449 | MR | Zbl

[9] S. M. Ageev, S. A. Bogatyi, “The Banach–Mazur compactum is not homeomorphic to the Hilbert cube”, Russian Math. Surveys, 53:1 (1998), 205–207 | DOI | MR | Zbl

[10] S. Ageev, S. Bogatyi, The Banach–Mazur compactum in the dimension two, Topology Atlas Preprint, No 291, 1997; http://at.yorku.ca/p/a/a/m/14.htm

[11] S. A. Antonyan, “The topology of the Banach–Mazur compactum”, Fund. Math., 166:3 (2000), 209–232 | MR | Zbl

[12] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York–London, 1972 | MR | MR | Zbl | Zbl

[13] M. Murayama, “On $G$-ANRs and their $G$-homotopy types”, Osaka J. Math., 20:3 (1983), 479–512 | MR | Zbl

[14] K. Borsuk, Theory of retracts, PWN, Warsaw, 1967 | MR | MR | Zbl

[15] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965 | MR | Zbl

[16] S. M. Ageev, D. Repovš, “On extending actions of groups”, Sb. Math., 201:2 (2010), 159–182 | DOI | MR | Zbl

[17] S. M. Ageev, “Extensor properties of orbit spaces and the problem of action extension”, Moscow Univ. Math. Bull., 49:1 (1994), 9–12 | MR | Zbl

[18] S. M. Ageev, D. Repovš, “On Murayama's theorem on extensor properties of $G$-spaces of given orbit types”, Topology Appl., 159:7 (2012), 1743–1749 | DOI | Zbl

[19] S. I. Gelfand, Yu. I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996 | MR | MR | Zbl | Zbl

[20] Izv. Math., 76:5 (2012), 857–880 | DOI | DOI | MR | Zbl

[21] D. P. Sullivan, Geometric topology, Massachusetts Institute of Technology, Cambridge, MA, 1971 | MR | MR | Zbl | Zbl

[22] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966 | MR | MR | Zbl | Zbl

[23] S. M. Ageev, “Classifying spaces for free actions, and the Hilbert–Smith conjecture”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 137–144 | DOI | MR | Zbl | Zbl