Bounded and periodic solutions of~nonlinear functional differential equations
Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 743-767
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions for the existence of bounded and periodic solutions of the nonlinear functional differential equation
$$
\frac{d^mx(t)}{dt^m}+(Fx)(t)=h(t), \qquad t\in \mathbb{R},
$$
are presented, involving local linear approximations to the operator $F$.
Bibliography: 23 titles.
Keywords:
bounded and periodic solutions, nonlinear functional differential equations, invertibility of linear operators.
@article{SM_2012_203_5_a4,
author = {V. E. Slyusarchuk},
title = {Bounded and periodic solutions of~nonlinear functional differential equations},
journal = {Sbornik. Mathematics},
pages = {743--767},
publisher = {mathdoc},
volume = {203},
number = {5},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_5_a4/}
}
V. E. Slyusarchuk. Bounded and periodic solutions of~nonlinear functional differential equations. Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 743-767. http://geodesic.mathdoc.fr/item/SM_2012_203_5_a4/