One-dimensional Gromov minimal filling problem
Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 677-726 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.
Keywords: metric spaces, Gromov minimal fillings, Steiner minimal trees, minimal spanning trees, Steiner ratio.
@article{SM_2012_203_5_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {One-dimensional {Gromov} minimal filling problem},
     journal = {Sbornik. Mathematics},
     pages = {677--726},
     year = {2012},
     volume = {203},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_5_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - One-dimensional Gromov minimal filling problem
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 677
EP  - 726
VL  - 203
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_5_a2/
LA  - en
ID  - SM_2012_203_5_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T One-dimensional Gromov minimal filling problem
%J Sbornik. Mathematics
%D 2012
%P 677-726
%V 203
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2012_203_5_a2/
%G en
%F SM_2012_203_5_a2
A. O. Ivanov; A. A. Tuzhilin. One-dimensional Gromov minimal filling problem. Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 677-726. http://geodesic.mathdoc.fr/item/SM_2012_203_5_a2/

[1] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003

[2] V. Jarnǐk, M. Kössler, “Sur les graphes minima, contenant $n$ points donnés”, Časopis, 63 (1934), 223–235 | Zbl

[3] R. Courant, H. Robbins, What is mathematics? An elementary approach to ideas and methods, Oxford Univ. Press, New York, 1996 | MR | Zbl | Zbl

[4] E. N. Gilbert, H. O. Pollak, “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[5] D.-Z. Du, F. K. Hwang, “A proof of the Gilbert–Pollak conjecture on the Steiner ratio”, Algorithmica, 7:2–3 (1992), 121–135 | DOI | MR | Zbl

[6] A. O. Ivanov, A. A. Tuzhilin, “Otnoshenie Shteinera: sovremennoe sostoyanie”, Matem. voprosy kibern., 11 (2002), 27–48 | MR | Zbl

[7] P. de Wet, “The Euclidean Steiner ratio: some recent results”, Proceedings of the 5th Asian mathematical conference (Kuala Lumpur, Malaysia, 2009), Universiti Sains Malaysia, Penang, 2009, 442–446 | Zbl

[8] P. O. De Wet, Geometric Steiner minimal trees, PhD thesis, Univ. of South Africa, Pretoria, 2008

[9] N. Innami, B. H. Kim, Y. Mashiko, K. Shiohama, “The Steiner ratio conjecture of Gilbert–Pollak may still be open”, Algorithmica, 57:4 (2010), 869–872 | DOI | MR | Zbl

[10] G. Kolata, “Solution to old puzzle: how short a shortcut?”, The New York Times, October 30, 1990

[11] J. H. Rubinstein, J. F. Weng, “Compression theorems and Steiner ratios on spheres”, J. Comb. Optim., 1:1 (1997), 67–78 | DOI | MR | Zbl

[12] D. T. Lee, C. F. Shen, “The Steiner minimal tree problem in the $\lambda$-geometry plane”, Algorithms and computation, Lecture Notes in Comput. Sci., 1178, Springer-Verlag, Berlin, 1996, 247–255 | DOI | MR | Zbl

[13] M. Gromov, “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | MR | Zbl

[14] D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[15] S. V. Ivanov, Ob'emy i ploschadi v metricheskoi geometrii, Dis. $\dots$ dokt. fiz.-matem. nauk, SPGU, S.-Peterburg, 2009

[16] A. T. Fomenko, “Minimal compacta in Riemannian manifolds and Reifenberg's conjecture”, Math. USSR-Izv., 6:5 (1972), 1037–1066 | DOI | MR | Zbl

[17] A. T. Fomenko, “The multidimensional Plateau problem in Riemannian manifolds”, Math. USSR-Sb., 18:3 (1972), 487–527 | DOI | MR | Zbl

[18] N. S. Gusev, “Canonical decompositions of piecewise affine mappings, polyhedra-traces, and geometrical variational problems”, J. Math. Sci., 149:1 (2008), 896–921 | DOI | MR | Zbl

[19] A. O. Ivanov, A. A. Tuzhilin, “Deformation of a manifold that reduces its volume with maximal velocity”, Moscow Univ. Math. Bull., 44:3 (1989), 16–20 | MR | Zbl

[20] V. L. Chernyshev, A. I. Shafarevich, “Semiclassical spectrum of the Schrödinger operator on a geometric graph”, Math. Notes, 82:3–4 (2007), 542–554 | DOI | MR | Zbl

[21] A. Yu. Eremin, “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sbornik (to appear)

[22] O. V. Rubleva, “Kriterii additivnosti konechnogo metricheskogo prostranstva i minimalnye zapolneniya”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 2 (to appear)

[23] A. O. Ivanov, Z. N. Ovsyannikov, N. P. Strelkova, A. A. Tuzhilin, “Odnomernye minimalnye zapolneniya s rebrami otritsatelnogo vesa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh. (to appear)

[24] Z. N. Ovsyannikov, “Obobschenno additivnye prostranstva i ikh osnovnye svoistva”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh. (to appear)

[25] E. I. Filonenko, “Subotnoshenie Shteinera stepeni $4$ evklidovoi ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh. (to appear)

[26] A. O. Ivanov, I. M. Nikonov, A. A. Tuzhilin, “Sets admitting connection by graphs of finite length”, Sb. Math., 196:6 (2005), 845–884 | DOI | MR | Zbl

[27] A. T. Fomenko, “On minimal volumes of topological globally minimal surfaces in cobordisms”, Math. USSR-Izv., 18:1 (1982), 163–183 | DOI | MR | Zbl | Zbl

[28] A. T. Fomenko, “Multi-dimensional variational methods in the topology of extremals”, Russian Math. Surveys, 36:6 (1981), 127–165 | DOI | MR | Zbl

[29] A. T. Fomenko, “The multidimensional Plateau problem in Riemannian varieties”, Math. Notes, 13:1 (1973), 94–97 | DOI | MR

[30] Le Khong Van, A. T. Fomenko, “Test for minimality of lagrangian submanifolds in Kählerian ones”, Math. Notes, 42:4 (1987), 810–816 | DOI | MR | Zbl | Zbl

[31] P. A. Borodin, “An example of nonexistence of a Steiner point in a Banach space”, Math. Notes, 87:4 (2010), 485–488 | DOI | MR | Zbl

[32] A. O. Ivanov, A. A. Tuzhilin, Minimal networks. The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl

[33] F. P. Preparata, M. I. Shamos, Computational geometry. An introduction, Texts Monogr. Comput. Sci., Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl

[34] K. A. Zaretskii, “Postroenie dereva po naboru rasstoyanii mezhdu visyachimi vershinami”, UMN, 20:6 (1965), 90–92 | MR | Zbl

[35] J. M. S. Simões-Pereira, “A note on the tree realizability of a distance matrix”, J. Combinatorial Theory, 6 (1969), 303–310 | DOI | MR | Zbl

[36] E. Smolenskii, “A method for the linear recording of graphs”, U.S.S.R. Comput. Math. Math. Phys., 2:2 (1963), 396–397 | DOI | MR | Zbl

[37] S. L. Hakimi, S. S. Yau, “Distance matrix of a graph and its realizability”, Quart. Appl. Math., 22 (1965), 305–317 | MR | Zbl

[38] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer-Verlag, New York, 1987, 75–265 | MR | Zbl | Zbl