Mots-clés : semiorthogonal decomposition
@article{SM_2012_203_5_a1,
author = {A. Elagin},
title = {Descent theory for semiorthogonal decompositions},
journal = {Sbornik. Mathematics},
pages = {645--676},
year = {2012},
volume = {203},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_5_a1/}
}
A. Elagin. Descent theory for semiorthogonal decompositions. Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 645-676. http://geodesic.mathdoc.fr/item/SM_2012_203_5_a1/
[1] A. D. Elagin, “Semiorthogonal decompositions of derived categories of equivariant coherent sheaves”, Izv. Math., 73:5 (2009), 893–920 | DOI | MR | Zbl
[2] A. I. Bondal, M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | MR | Zbl
[3] N. Spaltenstein, “Resolutions of unbounded complexes”, Compositio Math., 65:2 (1988), 121–154 | MR | Zbl
[4] G. Laumon, L. Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb. (3), 39, Springer-Verlag, Berlin, 2000 | MR | Zbl
[5] M. Kashiwara, P. Shapira, Categories and sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, Berlin, 2006 | MR | Zbl
[6] M. Barr, Ch. Wells, “Toposes, triples and theories”, Repr. Theory Appl. Categ., 12 (2005), 1–288 | MR | Zbl
[7] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl
[8] A. D. Elagin, “Cohomological descent theory for a morphism of stacks and for equivariant derived categories”, Sb. Math., 202:4 (2011), 495–526 | DOI | MR | Zbl
[9] D. Mumford, J. Fogarty, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin–Heidelberg–New York, 1982 | MR | Zbl
[10] A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876 | DOI | MR | Zbl
[11] A. D. Elagin, “Equivariant derived category of bundles of projective spaces”, Proc. Steklov Inst. Math., 264:1 (2009), 56–61 | DOI | MR
[12] D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl