Descent theory for semiorthogonal decompositions
Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 645-676

Voir la notice de l'article provenant de la source Math-Net.Ru

We put forward a method for constructing semiorthogonal decompositions of the derived category of $G$-equivariant sheaves on a variety $X$ under the assumption that the derived category of sheaves on $X$ admits a semiorthogonal decomposition with components preserved by the action of the group $G$ on $X$. This method is used to obtain semiorthogonal decompositions of equivariant derived categories for projective bundles and blow-ups with a smooth centre as well as for varieties with a full exceptional collection preserved by the group action. Our main technical tool is descent theory for derived categories. Bibliography: 12 titles.
Keywords: derived category, descent theory, algebraic variety.
Mots-clés : semiorthogonal decomposition
@article{SM_2012_203_5_a1,
     author = {A. Elagin},
     title = {Descent theory for semiorthogonal decompositions},
     journal = {Sbornik. Mathematics},
     pages = {645--676},
     publisher = {mathdoc},
     volume = {203},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_5_a1/}
}
TY  - JOUR
AU  - A. Elagin
TI  - Descent theory for semiorthogonal decompositions
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 645
EP  - 676
VL  - 203
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_5_a1/
LA  - en
ID  - SM_2012_203_5_a1
ER  - 
%0 Journal Article
%A A. Elagin
%T Descent theory for semiorthogonal decompositions
%J Sbornik. Mathematics
%D 2012
%P 645-676
%V 203
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_5_a1/
%G en
%F SM_2012_203_5_a1
A. Elagin. Descent theory for semiorthogonal decompositions. Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 645-676. http://geodesic.mathdoc.fr/item/SM_2012_203_5_a1/