The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications
Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 613-644 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with properties of the modified $\mathbf P$-integral and $\mathbf P$-derivative, which are defined as multipliers with respect to the generalized Walsh-Fourier transform. Criteria for a function to have a representation as the $\mathbf P$-integral or $\mathbf P$-derivative of an $L^p$-function are given, and direct and inverse approximation theorems for $\mathbf P$-differentiable functions are established. A relation between the approximation properties of a function and the behaviour of $\mathbf P$-derivatives of the appropriate approximate identity is obtained. Analogues of Lizorkin and Taibleson's results on embeddings between the domain of definition of the $\mathbf P$-derivative and Hölder-Besov classes are established. Some theorems on embeddings into $\operatorname{BMO}$, Lipschitz and Morrey spaces are proved. Bibliography: 40 titles.
Keywords: modified $\mathbf P$-integral, modified $\mathbf P$-derivative, direct and inverse approximation theorems
Mots-clés : multiplicative Fourier transform, Hölder-Besov spaces.
@article{SM_2012_203_5_a0,
     author = {S. S. Volosivets},
     title = {The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications},
     journal = {Sbornik. Mathematics},
     pages = {613--644},
     year = {2012},
     volume = {203},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 613
EP  - 644
VL  - 203
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/
LA  - en
ID  - SM_2012_203_5_a0
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications
%J Sbornik. Mathematics
%D 2012
%P 613-644
%V 203
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/
%G en
%F SM_2012_203_5_a0
S. S. Volosivets. The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications. Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 613-644. http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/

[1] P. L. Butzer, H. J. Wagner, “Walsh–Fourier series and the concept of a derivative”, Applicable Anal., 3:1 (1973), 29–46 | DOI | MR | Zbl

[2] P. L. Butzer, H. J. Wagner, “A calculus for Walsh functions defined on $\mathbb R_+$”, Proc. Symp. Appl. Walsh Functions (Washington, 1973), 1973, 75–81 | Zbl

[3] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[4] J. Pál, “On the connection between the concept of a derivative defined on the dyadic field and the Walsh–Fourier transform”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18 (1976), 49–54 | MR | Zbl

[5] H. J. Wagner, “On dyadic analysis for functions defined on $\mathbb R_+$”, Theory and applications of Walsh functions. Proc. Symp. Hatfield Polytechnic, 1975, 101–129

[6] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[7] B. I. Golubov, “A modified strong dyadic integral and derivative”, Sb. Math., 193:4 (2002), 507–529 | DOI | MR | Zbl

[8] B. I. Golubov, “Fractional modified dyadic integral and derivative on $\mathbb{R}_+$”, Funct. Anal. Appl., 39:2 (2005), 135–139 | DOI | MR | Zbl

[9] B. I. Golubov, “Modified dyadic integral and fractional derivative on $\mathbb{R}_+$”, Math. Notes, 79:2 (2006), 196–214 | DOI | MR | Zbl

[10] B. I. Golubov, “On some properties of fractional dyadic derivative and integral”, Anal. Math., 32:3 (2006), 173–205 | DOI | MR | Zbl

[11] S. S. Volosivets, “A modified $P$-adic integral and a modified $P$-adic derivative for functions defined on a half-axis”, Russian Math. (Iz. VUZ), 49:6 (2005), 25–36 | MR | Zbl

[12] S. S. Volosivets, “The modified multiplicative integral and derivative of arbitrary order on the semiaxis”, Izv. Math., 70:2 (2006), 211–231 | DOI | MR | Zbl

[13] C. W. Onneweer, “Fractional differentiation and Lipschitz spaces on local fields”, Trans. Amer. Math. Soc., 258:1 (1980), 155–165 | DOI | MR | Zbl

[14] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Scientific, River Edge, NJ, 1994 | MR | MR | Zbl | Zbl

[15] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[16] M. F. Timan, “Nailuchshee priblizhenie i modul gladkosti funktsii, zadannykh na vsei veschestvennoi osi”, Izv. vuzov. Matem., 1961, no. 6, 108–120 | MR | Zbl

[17] M. F. Timan, “Priblizhenie funktsii, zadannykh na vsei veschestvennoi osi, tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matem., 1968, no. 2, 89–101 | MR | Zbl

[18] E. M. Stein, A. Zygmund, “Boundedness of translation invariant operators on Hölder spaces and $L^p$-spaces”, Ann. of Math. (2), 85:2 (1967), 337–349 | DOI | MR | Zbl

[19] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166:1 (1994), 95–103 | DOI | MR | Zbl

[20] S. S. Volosivets, “Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces”, Izv. Math., 75:1 (2011), 29–51 | DOI | MR | Zbl

[21] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[22] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl

[23] B. I. Golubov, S. S. Volosivets, “On the integrability and uniform convergence of multiplicative Fourier transforms”, Georgian Math. J., 16:3 (2009), 533–546 | MR | Zbl

[24] C. W. Onneweer, “The Fourier transform of Herz spaces on certain groups”, Monatsh. Math., 97:4 (1984), 297–310 | DOI | MR | Zbl

[25] S. Fridli, “On the rate of convergence of Cesaro means of Walsh–Fourier series”, J. Approx. Theory, 76:1 (1994), 31–53 | DOI | MR | Zbl

[26] P. L. Butzer, K. Scherer, “On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Stečkin”, Aequationes Math., 3:1–2 (1969), 170–185 | DOI | MR | Zbl

[27] L. Leindler, “Generalization of inequalities of Hardy and Littlewood”, Acta Sci. Math. (Szeged), 31:1–2 (1970), 279–285 | MR | Zbl

[28] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl

[29] T. I. Amanov, “Representation and imbedding theorems for the function spaces $S^{(r)}_{p,\theta}B(R_n)$ and $S^{(r)}_{p^{\ast},\theta}B$ ($0\le x_j\le 2\pi$; $j=1,\dots,n$)”, Proc. Steklov Inst. Math., 77 (1965), 3–36 | MR | Zbl | Zbl

[30] E. S. Smailov, Z. R. Suleǐmenova, “Embedding theorems for Besov spaces over multiplicative Price bases”, Proc. Steklov Inst. Math., 243:4 (2003), 302–308 | MR | Zbl

[31] H. Kitada, “Potential operators and multipliers on locally compact Vilenkin groups”, Bull. Austral. Math. Soc., 54:3 (1996), 459–471 | DOI | MR | Zbl

[32] S. G. Samko, “K opisaniyu obraza $I^{\alpha}(L_p)$ potentsialov Rissa”, Izv. AN ArmSSR. Matem., 12:5 (1977), 329–334 | MR | Zbl

[33] C. W. Onneweer, “Fractional differentiation on the group of integers of a $p$-adic or $p$-series field”, Anal. Math., 3:2 (1977), 119–130 | DOI | MR | Zbl

[34] G.-I. Sunouchi, “Derivatives of a polynomial of best approximation”, Jber. Deutsch. Math.-Verein., 70:3 (1968), 165–166 | MR | Zbl

[35] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982 | MR | Zbl

[36] M. Zamansky, “Classes de saturation de certains procédés d'approximation des séries de Fourier des fonctions continues et applications à quelques problèmes d'approximation”, Ann. Sci. École. Norm. Sup. (3), 66:1 (1949), 19–93 | MR | Zbl

[37] P. I. Lizorkin, “Funktsiya tipa Khirshmana i sootnosheniya mezhdu prostranstvami $B_p^r(E_n)$ i $L_p^r(E_n)$”, Matem. sb., 63(105):4 (1964), 505–535 | MR | Zbl

[38] M. H. Taibleson, “On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties”, J. Math. Mech., 13:3 (1964), 407–479 | MR | Zbl

[39] N. Ya. Vilenkin, “K teorii lakunarnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. matem., 13:3 (1949), 245–252 | MR | Zbl

[40] M. F. Timan, K. Tukhliev, “Properties of certain orthonormal systems”, Russian Math. (Iz. VUZ), 27:9 (1983), 74–84 | MR | Zbl