The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications
Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 613-644

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with properties of the modified $\mathbf P$-integral and $\mathbf P$-derivative, which are defined as multipliers with respect to the generalized Walsh-Fourier transform. Criteria for a function to have a representation as the $\mathbf P$-integral or $\mathbf P$-derivative of an $L^p$-function are given, and direct and inverse approximation theorems for $\mathbf P$-differentiable functions are established. A relation between the approximation properties of a function and the behaviour of $\mathbf P$-derivatives of the appropriate approximate identity is obtained. Analogues of Lizorkin and Taibleson's results on embeddings between the domain of definition of the $\mathbf P$-derivative and Hölder-Besov classes are established. Some theorems on embeddings into $\operatorname{BMO}$, Lipschitz and Morrey spaces are proved. Bibliography: 40 titles.
Keywords: modified $\mathbf P$-integral, modified $\mathbf P$-derivative, direct and inverse approximation theorems
Mots-clés : multiplicative Fourier transform, Hölder-Besov spaces.
@article{SM_2012_203_5_a0,
     author = {S. S. Volosivets},
     title = {The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications},
     journal = {Sbornik. Mathematics},
     pages = {613--644},
     publisher = {mathdoc},
     volume = {203},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 613
EP  - 644
VL  - 203
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/
LA  - en
ID  - SM_2012_203_5_a0
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications
%J Sbornik. Mathematics
%D 2012
%P 613-644
%V 203
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/
%G en
%F SM_2012_203_5_a0
S. S. Volosivets. The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications. Sbornik. Mathematics, Tome 203 (2012) no. 5, pp. 613-644. http://geodesic.mathdoc.fr/item/SM_2012_203_5_a0/