Mots-clés : gradient absorption
@article{SM_2012_203_4_a6,
author = {V. A. Markasheva and An. F. Tedeev},
title = {The {Cauchy} problem for a~quasilinear parabolic equation with gradient absorption},
journal = {Sbornik. Mathematics},
pages = {581--611},
year = {2012},
volume = {203},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a6/}
}
V. A. Markasheva; An. F. Tedeev. The Cauchy problem for a quasilinear parabolic equation with gradient absorption. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 581-611. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a6/
[1] N. Garofalo, D.-M. Nhieu, “Isoperimetric and Sobolev inequalities for Carnot–Caratheodory spaces and the existence of minimal surfaces”, Comm. Pure Appl. Math., 49:10 (1996), 1081–1144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] I. Kombe, Hardy and Rellich type inequalities with remainders for Baouendi–Grushin vector fields, 2007, arXiv: 0704.1343
[3] A. S. Kalashnikov, “Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations”, Russian Math. Surveys, 42:2 (1987), 169–222 | DOI | MR | Zbl
[4] V. V. Grušin, “On a class of hypoelliptic operators”, Math. USSR-Sb., 12:3 (1970), 458–476 | DOI | MR | Zbl | Zbl
[5] M. S. Baouendi, “Sur une classe d'opérateurs elliptiques dégénérés”, Bull. Soc. Math. France, 95 (1967), 45–87 | MR | Zbl
[6] B. Franchi, E. Lanconelli, “Une métrique associée à une classe d'opérateurs elliptiques degeneres”, Conference on linear partial and pseudodifferential operators (Torino, 1982), Rend. Sem. Mat. Univ. Politec. Torino, Università e Politecnico, Toronto, 1984, 105–114 | MR | Zbl
[7] B. Franchi, E. Lanconelli, “Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:4 (1983), 523–541 | MR | Zbl
[8] V. A. Markasheva, A. F. Tedeev, “Local and global estimates of the solutions of the Cauchy problem for quasilinear parabolic equations with a nonlinear operator of Baouendi–Grushin type”, Math. Notes, 85:3 (2009), 385–396 | DOI | MR | Zbl
[9] V. A. Markasheva, “Lokalnaya gëlderovost reshenii kvazilineinykh parabolicheskikh uravnenii s nelineinym operatorom tipa Baouendi–Grushina, I”, Tr. IPMM, 16, IPMM NAN Ukrainy, Donetsk, 2008, 124–135 | MR
[10] V. A. Markasheva, “Lokalnaya gëlderovost reshenii kvazilineinykh parabolicheskikh uravnenii s nelineinym operatorom tipa Baouendi–Grushina, II”, Tr. IPMM, 17, IPMM NAN Ukrainy, Donetsk, 2008, 128–143 | MR
[11] S. Benachour, B. Roynette, P. Vallois, “Asymptotic estimates of solutions of $u_t-\frac{1}{2}\Delta u=-|\nabla u|$ in $R_+\times R^d$, $d\ge 2$”, J. Funct. Anal., 144:2 (1997), 301–324 | DOI | MR | Zbl
[12] Th. Gallay, Ph. Laurençot, “Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent”, Indiana Univ. Math. J., 56:1 (2007), 459–479 | DOI | MR | Zbl
[13] M. Ben-Artzi, “Global existence and decay for a nonlinear parabolic equation”, Nonlinear Anal., 19:8 (1992), 763–768 | DOI | MR | Zbl
[14] G. Barles, F. Da Lio, “On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations”, J. Math. Pures Appl. (9), 83:1 (2004), 53–75 | DOI | MR | Zbl
[15] L. Amour, M. Ben-Artzi, “Global existence and decay for viscous Hamilton–Jacobi equations”, Nonlinear Anal., 31:5–6 (1998), 621–628 | DOI | MR | Zbl
[16] S. Benachour, Ph. Laurençot, “Global solutions to viscous Hamilton-Jacobi equations with irregular initial data”, Comm. Partial Differential Equations, 24:11–12 (1999), 1999–2021 | DOI | MR | Zbl
[17] M. Ben-Artzi, H. Koch, “Decay of mass for a semilinear parabolic equation”, Comm. Partial Differential Equations, 24:5–6 (1999), 869–881 | DOI | MR | Zbl
[18] A. Dall'Aglio, D. Giachetti, S. Segura de León, “Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR | Zbl
[19] Ph. Laurençot, J. Vázquez, “Localized non-diffusive asymptotic patterns for nonlinear parabolic equations with gradient absorption”, J. Dynam. Differential Equations, 19:4 (2007), 985–1005 | DOI | MR | Zbl
[20] S. Snoussi, S. Tayachi, “Large time behavior of solutions for parabolic equations with nonlinear gradient terms”, Hokkaido Math. J., 36:2 (2007), 311–344 | MR | Zbl
[21] J.-Ph. Bartier, Ph. Laurençot, “Gradient estimates for a degenerate parabolic equation with gradient absorption and applications”, J. Funct. Anal., 254:3 (2008), 851–878 | DOI | MR | Zbl
[22] Ch. Stinner, “Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion”, J. Differential Equations, 248:2 (2010), 209–228 | DOI | MR | Zbl
[23] D. Andreucci, A. F. Tedeev, M. Ughi, “The Cauchy problem for degenerate parabolic equations with source and damping”, Ukr. Math. Bull., 1:1 (2004), 1–23 | MR | Zbl
[24] A. F. Tedeev, “Initial-boundary value problems for quasilinear degenerate parabolic equations with damping. The Neumann problem”, Ukrainian Math. J., 58:2 (2006), 304–317 | DOI | MR | Zbl
[25] D. Andreucci, A. F. Tedeev, “Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity”, Interfaces Free Bound., 3:3 (2001), 233–264 | DOI | MR | Zbl
[26] D. Andreucci, A. F. Tedeev, “Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity”, Adv. Differential Equations, 5:7–9 (2000), 833–860 | MR | Zbl
[27] D. Andreucci, A. F. Tedeev, “A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary”, J. Math. Anal. Appl., 231:2 (1999), 543–567 | DOI | MR | Zbl
[28] D. S. Jerison, “The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. II”, J. Funct. Anal., 43:2 (1981), 224–257 | DOI | MR | Zbl
[29] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc, Providence, RI, 2007, 303–344 | DOI | MR | Zbl
[30] E. A. Plotnikova, “Integral representations and the generalized Poincare inequality on Carnot groups”, Siberian Math. J., 49:2 (2008), 339–352 | DOI | MR | Zbl
[31] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[32] E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993 | MR | Zbl
[33] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl
[34] D. Andreucci, “Degenerate parabolic equations with initial data measures”, Trans. Amer. Math. Soc., 349:10 (1997), 3911–3923 | DOI | MR | Zbl
[35] H. Shang, F. Li, “On the Cauchy problem for the evolution $p$-Laplacian equations with gradient term and source and measures as initial data”, Nonlinear Anal., 72:7–8 (2010), 3396–3411 | DOI | MR | Zbl