Best recovery of the Laplace operator of a function from incomplete spectral data
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 569-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the problem of best recovery for a fractional power of the Laplacian of a smooth function on $\mathbb R^d$ from an exact or approximate Fourier transform for it, which is known on some convex subset of $\mathbb R^d$. A series of optimal recovery methods is constructed. Information about the Fourier transform outside some ball centred at the origin proves redundant — it is not used by the optimal methods. These optimal methods differ in the way they ‘process’ key information. Bibliography: 12 titles.
Keywords: Laplace operator, optimal recovery, extremal problem
Mots-clés : Fourier transform.
@article{SM_2012_203_4_a5,
     author = {G. G. Magaril-Il'yaev and E. O. Sivkova},
     title = {Best recovery of the {Laplace} operator of a~function from incomplete spectral data},
     journal = {Sbornik. Mathematics},
     pages = {569--580},
     year = {2012},
     volume = {203},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - E. O. Sivkova
TI  - Best recovery of the Laplace operator of a function from incomplete spectral data
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 569
EP  - 580
VL  - 203
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/
LA  - en
ID  - SM_2012_203_4_a5
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A E. O. Sivkova
%T Best recovery of the Laplace operator of a function from incomplete spectral data
%J Sbornik. Mathematics
%D 2012
%P 569-580
%V 203
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/
%G en
%F SM_2012_203_4_a5
G. G. Magaril-Il'yaev; E. O. Sivkova. Best recovery of the Laplace operator of a function from incomplete spectral data. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 569-580. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/

[1] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1965

[2] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory (Freudenstadt, 1976), Plenum, New York, 1977, 1–54 | MR | Zbl

[3] A. A. Melkman, C. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16:1 (1979), 87–105 | DOI | MR | Zbl

[4] J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl

[5] C. A. Micchelli, T. J. Rivlin, “Lectures on optimal recovery”, Numerical analysis (Lancaster, 1984), Lecture Notes in Math., 1129, Springer-Verlag, Berlin, 1985, 21–93 | DOI | MR | Zbl

[6] V. V. Arestov, “Optimal recovery of operators, and related problems”, Proc. Steklov Inst. Math., 189 (1990), 1–20 | MR | Zbl

[7] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR | Zbl | Zbl

[8] G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Kolmogorov-type inequalities for derivatives”, Sb. Math., 188:12 (1997), 1799–1832 | DOI | MR | Zbl

[9] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error”, Sb. Math., 193:3 (2002), 387–407 | DOI | MR | Zbl

[10] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from inaccurate information about the spectrum and inequalities for derivatives”, Funct. Anal. Appl., 37:3 (2003), 203–214 | DOI | MR | Zbl

[11] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On optimal harmonic synthesis from inaccurate spectral data”, Funct. Anal. Appl., 44:3 (2010), 223–225 | DOI | MR

[12] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl