Best recovery of the Laplace operator of a~function from incomplete spectral data
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 569-580
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with the problem of best recovery for a fractional power of the Laplacian of a smooth function on $\mathbb R^d$ from an exact or approximate Fourier transform for it, which is known on some convex subset of $\mathbb R^d$. A series of optimal recovery methods is constructed. Information about the Fourier transform outside some ball centred at the origin proves redundant — it is not used by the optimal
methods. These optimal methods differ in the way they ‘process’ key information.
Bibliography: 12 titles.
Keywords:
Laplace operator, optimal recovery, extremal problem
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{SM_2012_203_4_a5,
author = {G. G. Magaril-Il'yaev and E. O. Sivkova},
title = {Best recovery of the {Laplace} operator of a~function from incomplete spectral data},
journal = {Sbornik. Mathematics},
pages = {569--580},
publisher = {mathdoc},
volume = {203},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/}
}
TY - JOUR AU - G. G. Magaril-Il'yaev AU - E. O. Sivkova TI - Best recovery of the Laplace operator of a~function from incomplete spectral data JO - Sbornik. Mathematics PY - 2012 SP - 569 EP - 580 VL - 203 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/ LA - en ID - SM_2012_203_4_a5 ER -
G. G. Magaril-Il'yaev; E. O. Sivkova. Best recovery of the Laplace operator of a~function from incomplete spectral data. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 569-580. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a5/