An inverse theorem on `economic' maps
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 554-568
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the bound from the theorem on ‘economic’ maps is best possible. Namely, for $m>n+d$ we construct a map from an $n$-dimensional simplex to an $m$-dimensional Euclidean space for which (and
for any close map) there exists a $d$-dimensional plane whose preimage has cardinality not less than the upper bound $\lceil(dn+n+1)/(m-n-d)\rceil+d$ from the theorem on ‘economic’ maps.
Bibliography: 16 titles.
Keywords:
embedding, Euclidean space, cardinality of the preimage of a plane.
@article{SM_2012_203_4_a4,
author = {S. I. Bogataya and S. A. Bogatyi and E. A. Kudryavtseva},
title = {An inverse theorem on `economic' maps},
journal = {Sbornik. Mathematics},
pages = {554--568},
publisher = {mathdoc},
volume = {203},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a4/}
}
S. I. Bogataya; S. A. Bogatyi; E. A. Kudryavtseva. An inverse theorem on `economic' maps. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 554-568. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a4/