An inverse theorem on `economic' maps
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 554-568 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the bound from the theorem on ‘economic’ maps is best possible. Namely, for $m>n+d$ we construct a map from an $n$-dimensional simplex to an $m$-dimensional Euclidean space for which (and for any close map) there exists a $d$-dimensional plane whose preimage has cardinality not less than the upper bound $\lceil(dn+n+1)/(m-n-d)\rceil+d$ from the theorem on ‘economic’ maps. Bibliography: 16 titles.
Keywords: embedding, Euclidean space, cardinality of the preimage of a plane.
@article{SM_2012_203_4_a4,
     author = {S. I. Bogataya and S. A. Bogatyi and E. A. Kudryavtseva},
     title = {An inverse theorem on `economic' maps},
     journal = {Sbornik. Mathematics},
     pages = {554--568},
     year = {2012},
     volume = {203},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a4/}
}
TY  - JOUR
AU  - S. I. Bogataya
AU  - S. A. Bogatyi
AU  - E. A. Kudryavtseva
TI  - An inverse theorem on `economic' maps
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 554
EP  - 568
VL  - 203
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_4_a4/
LA  - en
ID  - SM_2012_203_4_a4
ER  - 
%0 Journal Article
%A S. I. Bogataya
%A S. A. Bogatyi
%A E. A. Kudryavtseva
%T An inverse theorem on `economic' maps
%J Sbornik. Mathematics
%D 2012
%P 554-568
%V 203
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2012_203_4_a4/
%G en
%F SM_2012_203_4_a4
S. I. Bogataya; S. A. Bogatyi; E. A. Kudryavtseva. An inverse theorem on `economic' maps. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 554-568. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a4/

[1] G. Nöbeling, “Über eine $n$-dimensionale Universalmenge im $\mathbb R^{2n+1}$”, Math. Ann., 104:1 (1931), 71–80 | DOI | MR | Zbl

[2] L. Pontrjagin, G. Tolstowa, “Beweis des Mengerschen Einbettungssatzes”, Math. Ann., 105:5 (1931), 734–745 | DOI | MR | Zbl

[3] W. Hurewicz, “Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Räume”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1933, no. 24–25, 754–768 | Zbl

[4] V. G. Boltyanskii, “Otobrazheniya kompaktov v evklidovy prostranstva”, Izv. AN SSSR. Ser. matem., 23:6 (1959), 871–892 | MR | Zbl

[5] K. Borsuk, “On the $k$-independent subsets of the Euclidean space and of the Hilbert space”, Bull. Acad. Polon. Sci. Cl. III, 5:4 (1957), 351–356 | MR | Zbl

[6] A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1–4 (1918), 294–311 | DOI | MR | Zbl

[7] A. N. Kolmogorov, “Zamechanie no povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR | Zbl

[8] G. Sh. Rubinshtein, “Ob odnom metode issledovaniya vypuklykh mnozhestv”, Dokl. AN SSSR, 102:3 (1955), 451–454 | MR | Zbl

[9] S. A. Bogatyĭ, “Borsuk's conjecture, Ryshkov obstruction, interpolation, Chebyshev approximation, transversal Tverberg's theorem, and problems”, Proc. Steklov Inst. Math., 239:4 (2002), 55–73 | MR | Zbl

[10] S. A. Bogatyi, V. M. Valov, “Roberts-type embeddings and conversion of transversal Tverberg's theorem”, Sb. Math., 196:11 (2005), 1585–1603 | DOI | MR | Zbl

[11] S. A. Bogatyi, “Finite-to-one maps”, Topology Appl., 155:17–18 (2008), 1876–1887 | DOI | MR | Zbl

[12] V. Boltyanski, H. Martini, V. Soltan, Geometric methods and optimization problems, Comb. Optim., 4, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[13] D. McCullough, L. R. Rubin, “Some $m$-dimensional compacta admitting a dense set of imbeddings into $\mathbb R^{2m}$”, Fund. Math., 133:3 (1989), 237–245 | MR | Zbl

[14] A. N. Dranišnikov, D. Repovš, E. V. Ščepin, “On intersections of compacta of complementary dimensions in Euclidean space”, Topology Appl., 38:3 (1991), 237–253 | DOI | MR | Zbl

[15] K. Kuratowski, Topology, v. 2, Academic Press, New York–London, 1968 | MR | MR | Zbl

[16] S. A. Bogatyi, “The geometry of maps into Euclidean space”, Russian Math. Surveys, 53:5 (1998), 893–920 | DOI | MR | Zbl