On the geometric properties of Ces\`aro spaces
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 514-533
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the Cesàro space $\operatorname{Ces}_{p}[0,1]$, $1\le p\infty$, contains a complemented subspace isomorphic to $l^q$ if and only if either $q=1$ or $q=p$. A class of subspaces of this space that contain complemented copies of the space $l^p$ is distinguished.
Bibliography: 16 titles.
Keywords:
Banach lattices, Cesàro spaces, complemented subspaces, copies of $l^q$-spaces, sublinear operators.
@article{SM_2012_203_4_a2,
author = {S. V. Astashkin},
title = {On the geometric properties of {Ces\`aro} spaces},
journal = {Sbornik. Mathematics},
pages = {514--533},
publisher = {mathdoc},
volume = {203},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/}
}
S. V. Astashkin. On the geometric properties of Ces\`aro spaces. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 514-533. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/