Mots-clés : Cesàro spaces
@article{SM_2012_203_4_a2,
author = {S. V. Astashkin},
title = {On the geometric properties of {Ces\`aro} spaces},
journal = {Sbornik. Mathematics},
pages = {514--533},
year = {2012},
volume = {203},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/}
}
S. V. Astashkin. On the geometric properties of Cesàro spaces. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 514-533. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/
[1] M. Mastyło, “Banach spaces via sublinear operators”, Math. Japon., 36:1 (1991), 85–92 | MR | Zbl
[2] A. A. Jagers, “A note on Cesàro sequence spaces”, Nieuw Arch. Wisk. (3), 22 (1974), 113–124 | MR | Zbl
[3] B. I. Korenblyum, S. G. Krein, V. Ya. Levin, “O nekotorykh nelineinykh voprosakh teorii singulyarnykh integralov”, Dokl. AN SSSR, 62 (1948), 17–20 | MR | Zbl
[4] W. Wnuk, Banach lattices with order continuous norms, Polish Scientific Publ., Warszawa, 1999 | Zbl
[5] F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer-Verlag, New York, 2006 | MR | Zbl
[6] M. I. Kadec, A. Pełczyński, “Bases, lacunary sequences and complemented subspaces in the spaces $L_p$”, Studia Math., 21 (1962), 161–176 | MR | Zbl
[7] S. V. Astashkin, L. Maligranda, “Structure of Cesàro function spaces”, Indag. Math. (N.S.), 20:3 (2009), 329–379 | DOI | MR | Zbl
[8] S. V. Astashkin, L. Maligranda, “Cesàro function spaces fail the fixed point property”, Proc. Amer. Math. Soc., 136:12 (2008), 4289–4294 | DOI | MR | Zbl
[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl
[10] S. G. Krejn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982 | MR | MR | Zbl | Zbl
[11] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl
[12] W. A. J. Luxemburg, A. C. Zaanen, “Some examples of normed Köthe spaces”, Math. Ann., 162:3 (1965/1966), 337–350 | DOI | MR | Zbl
[13] S. V. Astashkin, L. Maligranda, “Rademacher functions in Cesàro type spaces”, Studia Math., 198:3 (2010), 235–247 | DOI | MR | Zbl
[14] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl
[15] M. Levy, “L'espace d'interpolation réel $(A_0,A_1)_{\theta,p}$ contient $\ell^p$”, C. R. Acad. Sci. Paris Sér. A-B, 289:14 (1979), 675–677 | MR | Zbl
[16] S. V. Astashkin, “Geometrical properties of Banach spaces generated by sublinear operators”, Positivity, 2012, Online First | DOI