On the geometric properties of Ces\`aro spaces
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 514-533

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Cesàro space $\operatorname{Ces}_{p}[0,1]$, $1\le p\infty$, contains a complemented subspace isomorphic to $l^q$ if and only if either $q=1$ or $q=p$. A class of subspaces of this space that contain complemented copies of the space $l^p$ is distinguished. Bibliography: 16 titles.
Keywords: Banach lattices, Cesàro spaces, complemented subspaces, copies of $l^q$-spaces, sublinear operators.
@article{SM_2012_203_4_a2,
     author = {S. V. Astashkin},
     title = {On the geometric properties of {Ces\`aro} spaces},
     journal = {Sbornik. Mathematics},
     pages = {514--533},
     publisher = {mathdoc},
     volume = {203},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On the geometric properties of Ces\`aro spaces
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 514
EP  - 533
VL  - 203
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/
LA  - en
ID  - SM_2012_203_4_a2
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On the geometric properties of Ces\`aro spaces
%J Sbornik. Mathematics
%D 2012
%P 514-533
%V 203
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/
%G en
%F SM_2012_203_4_a2
S. V. Astashkin. On the geometric properties of Ces\`aro spaces. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 514-533. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a2/