Mots-clés : stable action
@article{SM_2012_203_4_a1,
author = {A. B. Anisimov},
title = {On stability of diagonal actions and tensor invariants},
journal = {Sbornik. Mathematics},
pages = {500--513},
year = {2012},
volume = {203},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a1/}
}
A. B. Anisimov. On stability of diagonal actions and tensor invariants. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 500-513. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a1/
[1] V. L. Popov, “On the stability of the action of an algebraic group on an algebraic variety”, Math. USSR-Izv., 6:2 (1972), 367–379 | DOI | MR | Zbl | Zbl
[2] I. V. Arzhantsev, “On the stability of diagonal actions”, Math. Notes, 71:5–6 (2002), 735–738 | DOI | MR | Zbl
[3] E. B. Vinberg, “On stability of actions of reductive algebraic groups”, Lie algebras, rings and related topics (Tainan, Taiwan, 1997), Spring-Verlag, Hong-Kong, 2000, 188–202 | Zbl
[4] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl
[5] V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535 | DOI | MR | Zbl | Zbl
[6] D. I. Panyushev, “A restriction theorem and the Poincare series for $U$-invariants”, Math. Ann., 301:1 (1995), 655–675 | DOI | MR | Zbl
[7] S. Kumar, “Proof of the Parthasarathy–Ranga Rao–Varadarajan conjecture”, Invent. Math., 93:1 (1998), 117–130 | DOI | MR | Zbl
[8] O. Mathieu, “Construction d'un groupe de Kac-Moody et applications”, Compositio Math., 69:1 (1989), 37–60 | MR | Zbl
[9] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[10] È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl | Zbl
[11] V. L. Popov, “Tensor product decompositions and open orbits in multiple flag varieties”, J. Algebra, 313:1 (2007), 392–416 | DOI | MR | Zbl
[12] P. Littelmann, “A generalization of the Littlewood–Richardson rule”, J. Algebra, 130:2 (1990), 328–368 | DOI | MR | Zbl