On stability of diagonal actions and tensor invariants
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 500-513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a connected simply connected semisimple algebraic group $G$ we prove the existence of invariant tensors in certain tensor powers of rational $G$-modules and establish relations between the existence of such invariant tensors and stability of diagonal actions of $G$ on affine algebraic varieties. Bibliography: 12 titles.
Keywords: Weyl group, balanced collection.
Mots-clés : stable action
@article{SM_2012_203_4_a1,
     author = {A. B. Anisimov},
     title = {On stability of diagonal actions and tensor invariants},
     journal = {Sbornik. Mathematics},
     pages = {500--513},
     year = {2012},
     volume = {203},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a1/}
}
TY  - JOUR
AU  - A. B. Anisimov
TI  - On stability of diagonal actions and tensor invariants
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 500
EP  - 513
VL  - 203
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_4_a1/
LA  - en
ID  - SM_2012_203_4_a1
ER  - 
%0 Journal Article
%A A. B. Anisimov
%T On stability of diagonal actions and tensor invariants
%J Sbornik. Mathematics
%D 2012
%P 500-513
%V 203
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2012_203_4_a1/
%G en
%F SM_2012_203_4_a1
A. B. Anisimov. On stability of diagonal actions and tensor invariants. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 500-513. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a1/

[1] V. L. Popov, “On the stability of the action of an algebraic group on an algebraic variety”, Math. USSR-Izv., 6:2 (1972), 367–379 | DOI | MR | Zbl | Zbl

[2] I. V. Arzhantsev, “On the stability of diagonal actions”, Math. Notes, 71:5–6 (2002), 735–738 | DOI | MR | Zbl

[3] E. B. Vinberg, “On stability of actions of reductive algebraic groups”, Lie algebras, rings and related topics (Tainan, Taiwan, 1997), Spring-Verlag, Hong-Kong, 2000, 188–202 | Zbl

[4] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[5] V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535 | DOI | MR | Zbl | Zbl

[6] D. I. Panyushev, “A restriction theorem and the Poincare series for $U$-invariants”, Math. Ann., 301:1 (1995), 655–675 | DOI | MR | Zbl

[7] S. Kumar, “Proof of the Parthasarathy–Ranga Rao–Varadarajan conjecture”, Invent. Math., 93:1 (1998), 117–130 | DOI | MR | Zbl

[8] O. Mathieu, “Construction d'un groupe de Kac-Moody et applications”, Compositio Math., 69:1 (1989), 37–60 | MR | Zbl

[9] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[10] È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl | Zbl

[11] V. L. Popov, “Tensor product decompositions and open orbits in multiple flag varieties”, J. Algebra, 313:1 (2007), 392–416 | DOI | MR | Zbl

[12] P. Littelmann, “A generalization of the Littlewood–Richardson rule”, J. Algebra, 130:2 (1990), 328–368 | DOI | MR | Zbl