Bifurcation sets in the Kovalevskaya-Yehia problem
Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 459-499
Voir la notice de l'article provenant de la source Math-Net.Ru
The two-parameter family of
bifurcation diagrams $\Sigma$ of the moment map is investigated in
the integrable Kovalevskaya-Yehia case for the motion of a rigid body.
A method is developed which is useful for calculating the bifurcation set $\Theta$
in the parameter space which corresponds to
bifurcations of diagrams in $\Sigma$
and for classifying these bifurcations.
The properties of the sets
$\Sigma$ and $\Theta$ are thoroughly investigated, and details of
the modifications
the bifurcation diagrams undergo as the value of the parameter
crosses $\Theta$ are described. Illustrations which explain the
structure of the different types of diagram and their interrelations are given.
Bibliography: 22 titles.
Keywords:
Kovalevskaya-Yehia problem, integrable systems, bifurcation diagrams.
@article{SM_2012_203_4_a0,
author = {P. P. Andreyanov and K. E. Dushin},
title = {Bifurcation sets in the {Kovalevskaya-Yehia} problem},
journal = {Sbornik. Mathematics},
pages = {459--499},
publisher = {mathdoc},
volume = {203},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_4_a0/}
}
P. P. Andreyanov; K. E. Dushin. Bifurcation sets in the Kovalevskaya-Yehia problem. Sbornik. Mathematics, Tome 203 (2012) no. 4, pp. 459-499. http://geodesic.mathdoc.fr/item/SM_2012_203_4_a0/