Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 424-458
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbb N$ be the set of positive integers and $\mathfrak S_\infty$ the set of finite permutations of $\mathbb N$. For a partition $\Pi$ of the set $\mathbb N$ into infinite parts $\mathbb A_1,\mathbb A_2, \dots$ we denote by $\mathfrak S_\Pi$ the subgroup of $\mathfrak S_\infty$ whose elements leave invariant each of the sets $\mathbb A_j$. We set $\mathfrak S_\infty^{(N)}= \{s\in \mathfrak S_\infty : s(i)=i\ \text{for any}\ i=1,2,\dots,N\}$. A factor representation $T$ of the group $\mathfrak S_\infty$ is said to be $\Pi$-admissible if for some $N$ it contains a nontrivial identity subrepresentation of the subgroup
$\mathfrak S_\Pi\cap\mathfrak S_\infty^{(N)}$. In the paper, we obtain a classification of the $\Pi$-admissible factor representations of $\mathfrak S_\infty$.
Bibliography: 14 titles.
Keywords:
factor representation, Young subgroup, $\Pi$-admissible representation.
@article{SM_2012_203_3_a5,
author = {N. I. Nessonov},
title = {Representations of $\mathfrak{S}_\infty$ admissible with respect to {Young} subgroups},
journal = {Sbornik. Mathematics},
pages = {424--458},
publisher = {mathdoc},
volume = {203},
number = {3},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a5/}
}
N. I. Nessonov. Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 424-458. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a5/