Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 424-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb N$ be the set of positive integers and $\mathfrak S_\infty$ the set of finite permutations of $\mathbb N$. For a partition $\Pi$ of the set $\mathbb N$ into infinite parts $\mathbb A_1,\mathbb A_2, \dots$ we denote by $\mathfrak S_\Pi$ the subgroup of $\mathfrak S_\infty$ whose elements leave invariant each of the sets $\mathbb A_j$. We set $\mathfrak S_\infty^{(N)}= \{s\in \mathfrak S_\infty : s(i)=i\ \text{for any}\ i=1,2,\dots,N\}$. A factor representation $T$ of the group $\mathfrak S_\infty$ is said to be $\Pi$-admissible if for some $N$ it contains a nontrivial identity subrepresentation of the subgroup $\mathfrak S_\Pi\cap\mathfrak S_\infty^{(N)}$. In the paper, we obtain a classification of the $\Pi$-admissible factor representations of $\mathfrak S_\infty$. Bibliography: 14 titles.
Keywords: factor representation, Young subgroup, $\Pi$-admissible representation.
@article{SM_2012_203_3_a5,
     author = {N. I. Nessonov},
     title = {Representations of $\mathfrak{S}_\infty$ admissible with respect to {Young} subgroups},
     journal = {Sbornik. Mathematics},
     pages = {424--458},
     year = {2012},
     volume = {203},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a5/}
}
TY  - JOUR
AU  - N. I. Nessonov
TI  - Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 424
EP  - 458
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a5/
LA  - en
ID  - SM_2012_203_3_a5
ER  - 
%0 Journal Article
%A N. I. Nessonov
%T Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
%J Sbornik. Mathematics
%D 2012
%P 424-458
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a5/
%G en
%F SM_2012_203_3_a5
N. I. Nessonov. Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 424-458. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a5/

[1] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl

[2] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl

[3] G. I. Ol'shanskiǐ, “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR | Zbl

[4] Yu. A. Neretin, Kategorii simmetrii i beskonechnomernye gruppy, URSS, M., 1998; Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, Clarendon Press, Oxford, 1996 | MR | Zbl

[5] G. I. Olshanskii, “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$”, Algebra i analiz, 1:4 (1989), 178–209 ; G. I. Olshanski, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[6] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi bisimmetricheskoi gruppy”, Funkts. analiz i ego pril., 28:2 (1994), 31–40 | MR | Zbl

[7] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. II, Zap. nauchn. sem. POMI, 240, POMI, SPb., 1997, 166–228 ; A. Okounkov, “On representations of the infinite symmetric group”, J. Math. Sci. (New York), 96:5 (1999), 3550–3589 | MR | Zbl | DOI

[8] A. M. Vershik, S. V. Kerov, “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of $\mathrm{AF}$-algebras)”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR | Zbl

[9] A. M. Vershik, N. I. Nessonov, Stabilnye predstavleniya beskonechnoi simmetricheskoi gruppy http://www.pdmi.ras.ru/preprint/2010/rus-2010.html

[10] A. M. Vershik, N. V. Tsilevich, “Markov measures on Young tableaux and induced representations of an infinite symmetric group”, Theory Probab. Appl., 51:1 (2007), 211–223 | DOI | MR | Zbl

[11] N. V. Tsilevich, A. M. Vershik, “Induced representations of the infinite symmetric group”, Pure Appl. Math. Q., 3:4 (2007), 1005–1026 | MR | Zbl

[12] N. I. Nessonov, “Polnaya klassifikatsiya predstavlenii $\mathrm{GL}(\infty)$, soderzhaschikh edinichnoe predstavlenie unitarnoi podgruppy”, Matem. sb., 130(172):2(6) (1986), 131–150 ; N. I. Nessonov, “A complete classification of the representations of $\mathrm{GL}(\infty)$ containing the identity representation of the unitary subgroup”, Math. USSR-Sb., 58:1 (1987), 127–147 | MR | Zbl | DOI | Zbl

[13] N. I. Nessonov, “KMSh-sostoyaniya na gruppe $\operatorname{GL}(\infty)$ i dopustimye predstavleniya $\operatorname{GL}(\infty)^X$”, Tr. Sankt-Peter. MO, 10 (2004), 117–172 ; N. I. Nessonov, “Kubo–Martin–Schwinger states on the group $\operatorname{GL}(\infty)$ and admissible representations of $\operatorname{GL}(\infty)^X$”, Proceedings of the St. Petersburg Mathematical Society, v. X, Amer. Math. Soc. Transl. Ser. 2, 214, Amer. Math. Soc., Providence, RI, 2005, 109–165 | Zbl | MR

[14] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., Clarendon Press, Oxford, 1995 | MR | Zbl