Convex hulls of a curve in control theory
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 406-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classification is obtained for typical singularities of the local transitivity sets of control systems on three-dimensional manifolds with nonconvex indicatrices that are closed smooth spatial curves. Bibliography: 8 titles.
Keywords: transitivity set, singularity, convex hull.
@article{SM_2012_203_3_a4,
     author = {A. N. Kurbatskii},
     title = {Convex hulls of a~curve in control theory},
     journal = {Sbornik. Mathematics},
     pages = {406--423},
     year = {2012},
     volume = {203},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a4/}
}
TY  - JOUR
AU  - A. N. Kurbatskii
TI  - Convex hulls of a curve in control theory
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 406
EP  - 423
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a4/
LA  - en
ID  - SM_2012_203_3_a4
ER  - 
%0 Journal Article
%A A. N. Kurbatskii
%T Convex hulls of a curve in control theory
%J Sbornik. Mathematics
%D 2012
%P 406-423
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a4/
%G en
%F SM_2012_203_3_a4
A. N. Kurbatskii. Convex hulls of a curve in control theory. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 406-423. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a4/

[1] V. M. Zakalyukin, A. N. Kurbatskii, “Envelope singularities of families of planes in control theory”, Proc. Steklov Inst. Math., 262:1 (2008), 66–79 | DOI | MR | Zbl

[2] A. A. Davydov, Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[3] V. M. Zakalyukin, “Singularities of convex hulls of smooth manifolds”, Funct. Anal. Appl., 11:3 (1977), 225–227 | DOI | MR | Zbl | Zbl

[4] V. D. Sedykh, “Stabilization of singularities of convex hulls”, Math. USSR Sb., 63:2 (1989), 499–505 | DOI | MR | Zbl

[5] O. P. Scherbak, “Proektivno-dvoistvennye prostranstvennye krivye i lezhandrovy osobennosti”, Tr. Tbilisskogo un-ta, 232–233:13–14 (1982), 280–336 | MR | Zbl

[6] M. É. Kazaryan, “Singularities of the boundary of fundamental systems, flat points of projective curves, and Schubert cells”, J. Soviet Math., 52:4 (1990), 3338–3349 | DOI | MR | Zbl | Zbl

[7] V. V. Goryunov, V. M. Zakalyukin, “Simple symmetric matrix singularities and the subgroups of Weyl groups $A_\mu$, $D_\mu$, $E_\mu$”, Mosc. Math. J., 3:2 (2003), 507–530 | MR | Zbl

[8] V. V. Goryunov, V. M. Zakalyukin, “On stability of projections of Lagrangian varieties”, Funct. Anal. Appl., 38:4 (2004), 249–255 | DOI | MR | Zbl