@article{SM_2012_203_3_a4,
author = {A. N. Kurbatskii},
title = {Convex hulls of a~curve in control theory},
journal = {Sbornik. Mathematics},
pages = {406--423},
year = {2012},
volume = {203},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a4/}
}
A. N. Kurbatskii. Convex hulls of a curve in control theory. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 406-423. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a4/
[1] V. M. Zakalyukin, A. N. Kurbatskii, “Envelope singularities of families of planes in control theory”, Proc. Steklov Inst. Math., 262:1 (2008), 66–79 | DOI | MR | Zbl
[2] A. A. Davydov, Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[3] V. M. Zakalyukin, “Singularities of convex hulls of smooth manifolds”, Funct. Anal. Appl., 11:3 (1977), 225–227 | DOI | MR | Zbl | Zbl
[4] V. D. Sedykh, “Stabilization of singularities of convex hulls”, Math. USSR Sb., 63:2 (1989), 499–505 | DOI | MR | Zbl
[5] O. P. Scherbak, “Proektivno-dvoistvennye prostranstvennye krivye i lezhandrovy osobennosti”, Tr. Tbilisskogo un-ta, 232–233:13–14 (1982), 280–336 | MR | Zbl
[6] M. É. Kazaryan, “Singularities of the boundary of fundamental systems, flat points of projective curves, and Schubert cells”, J. Soviet Math., 52:4 (1990), 3338–3349 | DOI | MR | Zbl | Zbl
[7] V. V. Goryunov, V. M. Zakalyukin, “Simple symmetric matrix singularities and the subgroups of Weyl groups $A_\mu$, $D_\mu$, $E_\mu$”, Mosc. Math. J., 3:2 (2003), 507–530 | MR | Zbl
[8] V. V. Goryunov, V. M. Zakalyukin, “On stability of projections of Lagrangian varieties”, Funct. Anal. Appl., 38:4 (2004), 249–255 | DOI | MR | Zbl