Mots-clés : conformal foliation
@article{SM_2012_203_3_a3,
author = {N. I. Zhukova},
title = {Global attractors of complete conformal foliations},
journal = {Sbornik. Mathematics},
pages = {380--405},
year = {2012},
volume = {203},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a3/}
}
N. I. Zhukova. Global attractors of complete conformal foliations. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 380-405. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a3/
[1] P. Molino, Riemannian foliations, Progr. Math., 263, Birkhäuser, Boston, MA, 1988 | MR | Zbl
[2] E. Salem, “Riemannian foliations and pseudogroups of isometries”, Application D in: P. Molino, Riemannian foliations, Progr. Math., 263, Birkhäuser, Boston, MA, 1988 | MR | Zbl
[3] N. I. Zhukova, “Minimal sets of Cartan foliations”, Proc. Steklov Inst. Math., 256:1 (2007), 105–135 | DOI | MR | Zbl
[4] L. Conlon, “Transversally parallelizable foliations of codimension two”, Trans. Amer. Math. Soc., 194 (1974), 79–102 | DOI | MR | Zbl
[5] I. Vaisman, “Conformal foliations”, Kodai Math. J., 2:1 (1979), 26–37 | DOI | MR | Zbl
[6] R. W. Sharpe, Differential geometry. Cartan's generalization of Klein's Erlangen program, Grad. Texts in Math., 166, Springer-Verlag, New York, 1997 | MR | Zbl
[7] D. V. Alekseevskiǐ, “Groups of conformal transformations of Riemannian spaces”, Math. USSR-Sb., 18:2 (1972), 285–301 | DOI | MR | Zbl | Zbl
[8] J. Ferrand, “Sur un lemme d'Alekseevskii relatif aux transformations conformes”, C. R. Acad. Sci. Paris Sér. A-B, 284:2 (1977), 121–123 | MR | Zbl
[9] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, Interscience Publ., New York–London–Sydney, 1963 | MR | MR | Zbl | Zbl
[10] R. A. Blumenthal, J. J Hebda, “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl
[11] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl
[12] A. Candel, L. Conlon, Foliations, v. I, Grad. Stud. Math., 23, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[13] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl
[14] R. A. Blumenthal, “Cartan submersions and Cartan foliations”, Illinois J. Math., 31:2 (1987), 327–343 | MR | Zbl
[15] N. I. Zhukova, “Complete foliations with transversal rigid geometries and their basic automorphisms”, Vestn. RUDN. Ser. matem., 2009, no. 2, 14–35
[16] Sh. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York–Heidelberg, 1972 | MR | MR | Zbl | Zbl
[17] C. Frances, “Essential conformal structures in Riemannian and Lorentzian geometry”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 231–260 | MR | Zbl
[18] U. Hertrich-Jeromin, Introduction to Möbius differential geometry, London Math. Soc. Lecture Note Ser., 300, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[19] M. Kapovich, “Kleinian groups in higher dimensions”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhäuser, Basel, 2007, 487–564 | MR | Zbl
[20] M. Bourdon, “Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts”, C. R. Acad. Sci. Paris Sér. I Math., 325:10 (1997), 1097–1100 | DOI | MR | Zbl