Global attractors of complete conformal foliations
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 380-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that every complete conformal foliation $(M,\mathscr F)$ of codimension $q\geqslant 3$ is either Riemannian or a $(\operatorname{Conf}(S^q), S^q)$-foliation. We further prove that if $(M,\mathscr F)$ is not Riemannian, it has a global attractor which is either a nontrivial minimal set or a closed leaf or a union of two closed leaves. In this theorem we do not assume that the manifold $M$ is compact. In particular, every proper conformal non-Riemannian foliation $(M,\mathscr F)$ has a global attractor which is either a closed leaf or a union of two closed leaves, and the space of all nonclosed leaves is a connected $q$-dimensional orbifold. We show that every countable group of conformal transformations of the sphere $S^q$ can be realized as the global holonomy group of a complete conformal foliation. Examples of complete conformal foliations with exceptional and exotic minimal sets as global attractors are constructed. Bibliography: 20 titles.
Keywords: global holonomy group, minimal set, global attractor.
Mots-clés : conformal foliation
@article{SM_2012_203_3_a3,
     author = {N. I. Zhukova},
     title = {Global attractors of complete conformal foliations},
     journal = {Sbornik. Mathematics},
     pages = {380--405},
     year = {2012},
     volume = {203},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a3/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Global attractors of complete conformal foliations
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 380
EP  - 405
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a3/
LA  - en
ID  - SM_2012_203_3_a3
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Global attractors of complete conformal foliations
%J Sbornik. Mathematics
%D 2012
%P 380-405
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a3/
%G en
%F SM_2012_203_3_a3
N. I. Zhukova. Global attractors of complete conformal foliations. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 380-405. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a3/

[1] P. Molino, Riemannian foliations, Progr. Math., 263, Birkhäuser, Boston, MA, 1988 | MR | Zbl

[2] E. Salem, “Riemannian foliations and pseudogroups of isometries”, Application D in: P. Molino, Riemannian foliations, Progr. Math., 263, Birkhäuser, Boston, MA, 1988 | MR | Zbl

[3] N. I. Zhukova, “Minimal sets of Cartan foliations”, Proc. Steklov Inst. Math., 256:1 (2007), 105–135 | DOI | MR | Zbl

[4] L. Conlon, “Transversally parallelizable foliations of codimension two”, Trans. Amer. Math. Soc., 194 (1974), 79–102 | DOI | MR | Zbl

[5] I. Vaisman, “Conformal foliations”, Kodai Math. J., 2:1 (1979), 26–37 | DOI | MR | Zbl

[6] R. W. Sharpe, Differential geometry. Cartan's generalization of Klein's Erlangen program, Grad. Texts in Math., 166, Springer-Verlag, New York, 1997 | MR | Zbl

[7] D. V. Alekseevskiǐ, “Groups of conformal transformations of Riemannian spaces”, Math. USSR-Sb., 18:2 (1972), 285–301 | DOI | MR | Zbl | Zbl

[8] J. Ferrand, “Sur un lemme d'Alekseevskii relatif aux transformations conformes”, C. R. Acad. Sci. Paris Sér. A-B, 284:2 (1977), 121–123 | MR | Zbl

[9] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, Interscience Publ., New York–London–Sydney, 1963 | MR | MR | Zbl | Zbl

[10] R. A. Blumenthal, J. J Hebda, “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[11] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[12] A. Candel, L. Conlon, Foliations, v. I, Grad. Stud. Math., 23, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[13] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl

[14] R. A. Blumenthal, “Cartan submersions and Cartan foliations”, Illinois J. Math., 31:2 (1987), 327–343 | MR | Zbl

[15] N. I. Zhukova, “Complete foliations with transversal rigid geometries and their basic automorphisms”, Vestn. RUDN. Ser. matem., 2009, no. 2, 14–35

[16] Sh. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York–Heidelberg, 1972 | MR | MR | Zbl | Zbl

[17] C. Frances, “Essential conformal structures in Riemannian and Lorentzian geometry”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 231–260 | MR | Zbl

[18] U. Hertrich-Jeromin, Introduction to Möbius differential geometry, London Math. Soc. Lecture Note Ser., 300, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[19] M. Kapovich, “Kleinian groups in higher dimensions”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhäuser, Basel, 2007, 487–564 | MR | Zbl

[20] M. Bourdon, “Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts”, C. R. Acad. Sci. Paris Sér. I Math., 325:10 (1997), 1097–1100 | DOI | MR | Zbl