Modifications of functions, Fourier coefficients and nonlinear approximation
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 351-379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work continues the author's investigations of the convergence of greedy algorithms from the standpoint of classical results on correction of functions. In particular, the following result is obtained: for each $\varepsilon$, $0<\varepsilon<1$, there exists a measurable set $E\subset [0,1)$ of measure $|E|>1-\varepsilon$ such that for each function $f\in L^{1}[0,1)$ a function $\widetilde{f}\in L^{1}(0,1)$ equal to $f$ on $E$ can be found such that the greedy algorithm for $\widetilde{f}$ with respect to the Walsh system converges to it almost everywhere on $[0,1]$, and all the nonzero elements of the sequence of Walsh-Fourier coefficients of the function thus obtained are arranged in decreasing order of their absolute values. Bibliography: 35 titles.
Keywords: correction of functions, nonlinear approximation, greedy algorithm.
Mots-clés : Fourier coefficients
@article{SM_2012_203_3_a2,
     author = {M. G. Grigoryan},
     title = {Modifications of functions, {Fourier} coefficients and nonlinear approximation},
     journal = {Sbornik. Mathematics},
     pages = {351--379},
     year = {2012},
     volume = {203},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a2/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - Modifications of functions, Fourier coefficients and nonlinear approximation
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 351
EP  - 379
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a2/
LA  - en
ID  - SM_2012_203_3_a2
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T Modifications of functions, Fourier coefficients and nonlinear approximation
%J Sbornik. Mathematics
%D 2012
%P 351-379
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a2/
%G en
%F SM_2012_203_3_a2
M. G. Grigoryan. Modifications of functions, Fourier coefficients and nonlinear approximation. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 351-379. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a2/

[1] N. N. Luzin, “K osnovnoi teoreme integralnogo ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | Zbl

[2] D. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Matem. sb., 11(53):1–2 (1942), 67–96 | MR | Zbl

[3] D. E. Menschov, “O ryadakh Fure ot summiruemykh funktsii”, Tr. MMO, 1, Izd-vo Mosk. un-ta, M., 1952, 5–38 | MR | Zbl

[4] D. E. Menschov, “O ryadakh Fure nepreryvnykh funktsii”, Uchenye zapiski MGU, 148:4 (1951), 108–132 | MR

[5] K. I. Oskolkov, “Uniform modulus of continuity of summable functions on sets of positive measure”, Soviet Math. Dokl., 17:2 (1976), 1028–1030 | MR | Zbl

[6] B. S. Kashin, G. G. Kosheleva, “An approach to “correction” theorems”, Moscow Univ. Math. Bull., 43:4 (1988), 1–5 | MR | Zbl | Zbl

[7] A. M. Olevskii, “The existence of functions with unremovable Carleman singularities”, Soviet Math. Dokl., 19:4 (1978), 102–106 | MR | Zbl

[8] Š. V. Heladze, “Convergence of Fourier series almost everywhere and in the $L$-metric”, Math. USSR-Sb., 35:4 (1979), 527–539 | DOI | MR | Zbl | Zbl

[9] M. G. Grigorian, “On the convergence of Fourier series in the metric of $L^{1}$”, Anal. Math., 17:3 (1991), 211–237 | DOI | MR | Zbl

[10] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Studia Math., 134:3 (1999), 207–216 | MR | Zbl

[11] M. G. Grigoryan, “On some properties of orthogonal systems”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 261–289 | DOI | MR | Zbl

[12] L. D. Gogoladze, T. S. Zerekidze, “O sopryazhennykh funktsiyakh neskolkikh peremennykh”, Soobsch. AN GSSR, 94:3 (1979), 541–544 | MR | Zbl

[13] M. G. Grigorian, “On the $L^p_\mu$-strong property of orthonormal systems”, Sb. Math., 194:10 (2003), 1503–1532 | DOI | MR | Zbl

[14] V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[15] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR | Zbl

[16] S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[17] P. Wojtaszczyk, “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl

[18] T. W. Körner, “Divergence of decreasing rearranged Fourier series”, Ann. of Math. (2), 144:1 (1996), 167–180 | DOI | MR | Zbl

[19] T. W. Körner, “Decreasing rearranged Fourier series”, J. Fourier Anal. Appl., 5:1 (1999), 1–19 | DOI | MR | Zbl

[20] R. Gribonval, M. Nielsen, 2003 http://hal.inria.fr/docs/00/57/62/12/PDF/R-2003-09.pdf

[21] M. G. Grigoryan, K. S. Kazaryan, F. Soria, “Mean convergence of orthogonal Fourier series of modified functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3798 | DOI | MR | Zbl

[22] E. D. Livshits, “Optimality of the greedy algorithm for some function classes”, Sb. Math., 198:5 (2007), 691–709 | DOI | MR | Zbl

[23] M. G. Grigoryan, “On the convergence in the $L^p$-metric of a greedy algorithm in a trigonometric series”, J. Contemp. Math. Anal., 39:5 (2004), 35–48 | MR

[24] M. G. Grigoryan, S. L. Gogyan, “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32:1 (2006), 49–80 | DOI | MR | Zbl

[25] S. L. Gogyan, “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11:2 (2005), 221–236 | MR | Zbl

[26] G. G. Gevorkyan, A. Kamont, “Two remarks on quasi-greedy bases in the space $L_1$”, J. Contemp. Math. Anal., 40:1 (2005), 2–14 | MR

[27] M. G. Grigorian, R. E. Zink, “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl

[28] M. G. Grigorian, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber–Schauder system”, Sb. Math., 199:5 (2008), 629–653 | DOI | MR | Zbl

[29] A. V. Sil'nichenko, “Rate of convergence of greedy algorithms”, Math. Notes, 76:4 (2004), 582–586 | DOI | MR | Zbl

[30] G. Amirkhanyan, “Convergence of greedy algorithm in Walsh system in $L^p$”, J. Contemp. Math. Anal., 43:3 (2008), 127–134 | DOI | MR | Zbl

[31] K. A. Navasardyan, A. A. Stepanyan, “On series by Haar system”, J. Contemp. Math. Anal., 42:4 (2007), 219–231 | DOI | MR | Zbl

[32] M. G. Grigorian, “On the Fourier–Walsh coefficients”, Real Anal. Exchange, 35:1 (2010), 157–166 | MR | Zbl

[33] M. Grigoryan, “Uniform convergence of the greedy algorithm with respect to the Walsh system”, Studia Math., 198:2 (2010), 197–206 | DOI | MR | Zbl

[34] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[35] R. E. A. C. Paley, “A remarkable series of orthogonal functions I, II”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | Zbl