Finite groups with Hall $\pi$-subgroups
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 326-350

Voir la notice de l'article provenant de la source Math-Net.Ru

New classes of finite groups with Hall $\pi$-subgroups that have the Sylow properties are constructed and studied. The classes of groups $C_\pi$ and $D_\pi$ introduced by P. Hall are substantially extended. Necessary and sufficient conditions are established under which a finite group has Hall $\pi$-subgroups. $D$-Theorems generalizing $D$-theorems of P. Hall, Wielandt, Baer, and Hartley are obtained. Bibliography: 30 titles.
Keywords: finite group, Hall $\pi$-subgroup, class of groups
Mots-clés : formation.
@article{SM_2012_203_3_a1,
     author = {V. A. Vedernikov},
     title = {Finite groups with {Hall} $\pi$-subgroups},
     journal = {Sbornik. Mathematics},
     pages = {326--350},
     publisher = {mathdoc},
     volume = {203},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a1/}
}
TY  - JOUR
AU  - V. A. Vedernikov
TI  - Finite groups with Hall $\pi$-subgroups
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 326
EP  - 350
VL  - 203
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a1/
LA  - en
ID  - SM_2012_203_3_a1
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%T Finite groups with Hall $\pi$-subgroups
%J Sbornik. Mathematics
%D 2012
%P 326-350
%V 203
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a1/
%G en
%F SM_2012_203_3_a1
V. A. Vedernikov. Finite groups with Hall $\pi$-subgroups. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 326-350. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a1/