The spectral properties of distributions and asymptotic methods in perturbation theory
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 307-325 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For differential equations of the form $x'=\varepsilon f(t,x;\varepsilon)$ in a Banach space a modification of the classical Krylov-Bogolyubov method is put forward. It allows complications in the construction of higher-order approximations which stem from the ‘small denominators problem’ to be avoided and many of the standard constraints on the behaviour of the function $f$ to be eliminated. The approach suggested is based on some results on the Fourier transforms of distributions. Bibliography: 17 titles.
Keywords: method of averaging, spectrum
Mots-clés : distributions, Fourier transform.
@article{SM_2012_203_3_a0,
     author = {V. S. Belonosov},
     title = {The spectral properties of distributions and asymptotic methods in perturbation theory},
     journal = {Sbornik. Mathematics},
     pages = {307--325},
     year = {2012},
     volume = {203},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/}
}
TY  - JOUR
AU  - V. S. Belonosov
TI  - The spectral properties of distributions and asymptotic methods in perturbation theory
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 307
EP  - 325
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/
LA  - en
ID  - SM_2012_203_3_a0
ER  - 
%0 Journal Article
%A V. S. Belonosov
%T The spectral properties of distributions and asymptotic methods in perturbation theory
%J Sbornik. Mathematics
%D 2012
%P 307-325
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/
%G en
%F SM_2012_203_3_a0
V. S. Belonosov. The spectral properties of distributions and asymptotic methods in perturbation theory. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 307-325. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/

[1] N. Kryloff, N. Bogoliuboff, Introduction to non-linear mechanics, Ann. of Math. Stud., 11, Princeton Univ. Press, Princeton, NJ, 1943 | MR | Zbl

[2] N. N. Bogoliubov, Yu. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl

[3] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971 | MR | Zbl

[4] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York–Heidelberg, 1978 | MR | MR | Zbl | Zbl

[5] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl

[6] T. G. Strizhak, Asimptoticheskii metod normalizatsii, Vischa shkola, Kiev, 1984 | MR | Zbl

[7] S. G. Kreǐn, Linear differential equations in Banach space, Transl. Math. Monogr., 29, Providence, RI, Amer. Math. Soc., 1971 | MR | MR | Zbl | Zbl

[8] P. P. Zabrejko, I. B. Ledovskaya, “Proof of the Bogolyubov–Krylov method for ordinary differential equations”, Differential Equations, 5 (1969), 198–208 | MR | Zbl | Zbl

[9] Ju. L. Dalec'kiǐ, M. G. Kreǐn, Stability of solutions of differential equations in Banach space, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl | Zbl

[10] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953 | MR | Zbl

[11] C. Corduneanu, Almost periodic functions, Chelsea Publ., New York, 1989 | MR | Zbl

[12] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge, 1982 | MR | MR | Zbl | Zbl

[13] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | MR | Zbl | Zbl

[14] L. Hörmander, The analysis of linear partial differential operators, vol. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[15] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen). II: Lineare topologische Räume. Räume von Grundfunktionen und verallgemeinerten Funktionen, VEB, Berlin, 1962 | MR | MR | Zbl

[16] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1928), 31–81 | DOI | MR | Zbl

[17] J. Dieudonné, Foundations of modern analysis, Academic Press, New York–London, 1960 | MR | Zbl | Zbl