The spectral properties of distributions and asymptotic methods in perturbation theory
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 307-325
Voir la notice de l'article provenant de la source Math-Net.Ru
For differential equations of the form $x'=\varepsilon f(t,x;\varepsilon)$ in a Banach space a modification of the classical Krylov-Bogolyubov method is put forward. It allows complications in the construction of
higher-order approximations which stem from the ‘small denominators problem’ to be avoided and
many of the standard constraints on the behaviour of the function $f$ to be eliminated. The approach suggested is based on some results on the Fourier transforms of distributions.
Bibliography: 17 titles.
Keywords:
method of averaging, spectrum
Mots-clés : distributions, Fourier transform.
Mots-clés : distributions, Fourier transform.
@article{SM_2012_203_3_a0,
author = {V. S. Belonosov},
title = {The spectral properties of distributions and asymptotic methods in perturbation theory},
journal = {Sbornik. Mathematics},
pages = {307--325},
publisher = {mathdoc},
volume = {203},
number = {3},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/}
}
V. S. Belonosov. The spectral properties of distributions and asymptotic methods in perturbation theory. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 307-325. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/