The spectral properties of distributions and asymptotic methods in perturbation theory
Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 307-325

Voir la notice de l'article provenant de la source Math-Net.Ru

For differential equations of the form $x'=\varepsilon f(t,x;\varepsilon)$ in a Banach space a modification of the classical Krylov-Bogolyubov method is put forward. It allows complications in the construction of higher-order approximations which stem from the ‘small denominators problem’ to be avoided and many of the standard constraints on the behaviour of the function $f$ to be eliminated. The approach suggested is based on some results on the Fourier transforms of distributions. Bibliography: 17 titles.
Keywords: method of averaging, spectrum
Mots-clés : distributions, Fourier transform.
@article{SM_2012_203_3_a0,
     author = {V. S. Belonosov},
     title = {The spectral properties of distributions and asymptotic methods in perturbation theory},
     journal = {Sbornik. Mathematics},
     pages = {307--325},
     publisher = {mathdoc},
     volume = {203},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/}
}
TY  - JOUR
AU  - V. S. Belonosov
TI  - The spectral properties of distributions and asymptotic methods in perturbation theory
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 307
EP  - 325
VL  - 203
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/
LA  - en
ID  - SM_2012_203_3_a0
ER  - 
%0 Journal Article
%A V. S. Belonosov
%T The spectral properties of distributions and asymptotic methods in perturbation theory
%J Sbornik. Mathematics
%D 2012
%P 307-325
%V 203
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/
%G en
%F SM_2012_203_3_a0
V. S. Belonosov. The spectral properties of distributions and asymptotic methods in perturbation theory. Sbornik. Mathematics, Tome 203 (2012) no. 3, pp. 307-325. http://geodesic.mathdoc.fr/item/SM_2012_203_3_a0/