Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms
Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 288-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first moments for the number of steps in different Euclidean algorithms are considered. For these moments asymptotic formulae with new remainder terms are obtained using refined estimates for sums of fractional parts and some ideas in Selberg's elementary proof of the prime number theorem. Bibliography: 12 titles.
Keywords: Euclidean algorithms, continued fractions, fractional parts, prime number theorem.
@article{SM_2012_203_2_a6,
     author = {D. Frolenkov},
     title = {Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency {Euclidean} algorithms},
     journal = {Sbornik. Mathematics},
     pages = {288--305},
     year = {2012},
     volume = {203},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a6/}
}
TY  - JOUR
AU  - D. Frolenkov
TI  - Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 288
EP  - 305
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a6/
LA  - en
ID  - SM_2012_203_2_a6
ER  - 
%0 Journal Article
%A D. Frolenkov
%T Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms
%J Sbornik. Mathematics
%D 2012
%P 288-305
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2012_203_2_a6/
%G en
%F SM_2012_203_2_a6
D. Frolenkov. Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 288-305. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a6/

[1] A. V. Ustinov, “Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm”, Izv. Math., 72:5 (2008), 1023–1059 | DOI | MR | Zbl

[2] A. V. Ustinov, Prilozheniya summ Klostermana v arifmetike i geometrii, Lambert Acad. Publ., 2011

[3] E. N. Zhabitskaya, “The average length of reduced regular continued fractions”, Sb. Math., 200:8 (2009), 1181–1214 | DOI | MR | Zbl

[4] A. G. Postnikov, Izbrannye trudy, Fizmatlit, M., 2005 | MR | Zbl

[5] E. N. Zhabitskaya, “Mean value of sums of partial quotients of continued fractions”, Math. Notes, 89:3 (2011), 450–454 | DOI | Zbl

[6] A. V. Ustinov, “The mean number of steps in the Euclidean algorithm with least absolute value remainders”, Math. Notes, 85:1 (2009), 142–145 | DOI | MR | Zbl

[7] A. V. Ustinov, “The mean number of steps in the Euclidean algorithm with odd partial quotients”, Math. Notes, 88:4 (2010), 574–584 | DOI | Zbl

[8] A. Ostrowski, “Bemerkungen zur Theorie der Diophantischen Approximationen”, Abh. Math. Sem. Univ. Hamburg, 1:1 (1922), 77–98 | DOI | Zbl

[9] D. E. Knuth, A. C. Yao, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl

[10] A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl

[11] K. Chandrasekharan, Arithmetical functions, Springer-Verlag, Berlin–New York, 1970 | MR | MR | Zbl | Zbl

[12] A. V. Ustinov, “Calculation of the variance in a problem in the theory of continued fractions”, Sb. Math., 198:6 (2007), 887–907 | DOI | MR | Zbl