Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field
Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 257-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of motion of the Kovalevskaya top in a double force field is investigated (the integrable case of A. G. Reyman and M. A. Semenov-Tian-Shansky without a gyrostatic momentum). It is a completely integrable Hamiltonian system with three degrees of freedom not reducible to a family of systems with two degrees of freedom. The critical set of the integral map is studied. The critical subsystems and bifurcation diagrams are described. The classification of all nondegenerate critical points is given. The set of these points consists of equilibria (nondegenerate singularities of rank 0), of singular periodic motions (nondegenerate singularities of rank 1), and also of critical two-frequency motions (nondegenerate singularities of rank 2). Bibliography: 32 titles.
Keywords: singularities of integrable Hamiltonian systems, momentum map, bifurcation diagram.
@article{SM_2012_203_2_a5,
     author = {P. E. Ryabov and M. P. Kharlamov},
     title = {Classification of singularities in the problem of motion of the {Kovalevskaya} top in a~double force field},
     journal = {Sbornik. Mathematics},
     pages = {257--287},
     year = {2012},
     volume = {203},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/}
}
TY  - JOUR
AU  - P. E. Ryabov
AU  - M. P. Kharlamov
TI  - Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 257
EP  - 287
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/
LA  - en
ID  - SM_2012_203_2_a5
ER  - 
%0 Journal Article
%A P. E. Ryabov
%A M. P. Kharlamov
%T Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field
%J Sbornik. Mathematics
%D 2012
%P 257-287
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/
%G en
%F SM_2012_203_2_a5
P. E. Ryabov; M. P. Kharlamov. Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 257-287. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/

[1] O. I. Bogoyavlenskij, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257 | DOI | MR | Zbl

[2] M. P. Kharlamov, “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, Mekhanika tverdogo tela, 2004, no. 34, 47–58 | MR

[3] H. Yehia, “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl

[4] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47:6 (1983), 737–743 | DOI | MR | Zbl

[5] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl

[6] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl

[7] I. I. Kharlamova, A. Y. Savushkin, “Bifurcation diagrams involving the linear integral of Yehia”, J. Phys. A, 43:10 (2010), Id 105203 | DOI | MR | Zbl

[8] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl

[9] A. V. Bolsinov, A. T. Fomenko, “Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body”, Math. Notes, 56:2 (1994), 859–861 | DOI | MR | Zbl

[10] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl

[11] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, “The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions”, Comm. Math. Phys., 122:2 (1989), 321–354 | DOI | MR | Zbl

[12] M. P. Kharlamov, “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl

[13] M. P. Kharlamov, “Oblasti suschestvovaniya kriticheskikh dvizhenii obobschennogo volchka Kovalevskoi i bifurkatsionnye diagrammy”, Mekhanika tverdogo tela, 2006, no. 36, 13–22 | MR

[14] D. B. Zotev, “Fomenko–Zieschang invariant in the Bogoyavlenskyi integrable case”, Regul. Chaotic Dyn., 5:4 (2000), 437–457 | DOI | MR | Zbl

[15] M. P. Kharlamov, A. Yu. Savushkin, “Separation of variables and integral manifolds in one problem of motion of generalized Kowalevski top”, Ukr. Math. Bull., 1:4 (2004), 569–586 | MR | Zbl

[16] M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class. II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR

[17] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[18] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl

[19] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[20] A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Cambridge Scientific Publ., Cambridge, 2006, 1–67 | MR | Zbl

[21] E. Miranda, N. T. Zung, “Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems”, Ann. Sci. École Norm. Sup. (4), 37:6 (2004), 819–839 | DOI | MR | Zbl

[22] N. T. Zung, “Torus actions and integrable systems”, Topological methods in the theory of integrable systems, Cambridge Scientific Publ., Cambridge, 2006, 289–328 | MR | Zbl

[23] M. P. Kharlamov, E. G. Shvedov, “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh volchka Kovalevskoi v dvoinom pole”, Mekhanika tverdogo tela, 2004, no. 34, 59–65 | MR

[24] M. P. Kharlamov, E. G. Shvedov, “On the existence of motions in the generalized 4th Appelrot class”, Regul. Chaotic Dyn., 11:3 (2006), 337–342 | DOI | MR | Zbl

[25] M. P. Kharlamov, “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, Mekhanika tverdogo tela, 2002, no. 32, 32–38 | MR | Zbl

[26] M. P. Kharlamov, “Osobye periodicheskie resheniya obobschennogo sluchaya Delone”, Mekhanika tverdogo tela, 2006, no. 36, 23–33 | MR

[27] D. B. Zotev, “Phase topology of Appelrot class I of a Kowalewski top in a magnetic field”, J. Math. Sci., 149:1 (2008), 922–946 | DOI | MR | Zbl

[28] M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class”, Regul. Chaotic Dyn., 12:3 (2007), 267–280 | DOI | MR | Zbl

[29] M. P. Kharlamov, D. B. Zotev, “Non-degenerate energy surfaces of rigid body in two constant fields”, Regul. Chaotic Dyn., 10:1 (2005), 15–19 | DOI | MR | Zbl

[30] V. V. Kalashnikov, “Prostye giperbolicheskie osobennosti puassonovykh deistvii”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 115–126

[31] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | Zbl

[32] A. A. Oshemkov, “Saddle singularities of complexity 1 of integrable Hamiltonian systems”, Moscow Univ. Math. Bull., 66:2 (2011), 60–69 | DOI