@article{SM_2012_203_2_a5,
author = {P. E. Ryabov and M. P. Kharlamov},
title = {Classification of singularities in the problem of motion of the {Kovalevskaya} top in a~double force field},
journal = {Sbornik. Mathematics},
pages = {257--287},
year = {2012},
volume = {203},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/}
}
TY - JOUR AU - P. E. Ryabov AU - M. P. Kharlamov TI - Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field JO - Sbornik. Mathematics PY - 2012 SP - 257 EP - 287 VL - 203 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/ LA - en ID - SM_2012_203_2_a5 ER -
P. E. Ryabov; M. P. Kharlamov. Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 257-287. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a5/
[1] O. I. Bogoyavlenskij, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257 | DOI | MR | Zbl
[2] M. P. Kharlamov, “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, Mekhanika tverdogo tela, 2004, no. 34, 47–58 | MR
[3] H. Yehia, “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl
[4] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47:6 (1983), 737–743 | DOI | MR | Zbl
[5] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl
[6] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl
[7] I. I. Kharlamova, A. Y. Savushkin, “Bifurcation diagrams involving the linear integral of Yehia”, J. Phys. A, 43:10 (2010), Id 105203 | DOI | MR | Zbl
[8] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl
[9] A. V. Bolsinov, A. T. Fomenko, “Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body”, Math. Notes, 56:2 (1994), 859–861 | DOI | MR | Zbl
[10] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl
[11] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, “The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions”, Comm. Math. Phys., 122:2 (1989), 321–354 | DOI | MR | Zbl
[12] M. P. Kharlamov, “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl
[13] M. P. Kharlamov, “Oblasti suschestvovaniya kriticheskikh dvizhenii obobschennogo volchka Kovalevskoi i bifurkatsionnye diagrammy”, Mekhanika tverdogo tela, 2006, no. 36, 13–22 | MR
[14] D. B. Zotev, “Fomenko–Zieschang invariant in the Bogoyavlenskyi integrable case”, Regul. Chaotic Dyn., 5:4 (2000), 437–457 | DOI | MR | Zbl
[15] M. P. Kharlamov, A. Yu. Savushkin, “Separation of variables and integral manifolds in one problem of motion of generalized Kowalevski top”, Ukr. Math. Bull., 1:4 (2004), 569–586 | MR | Zbl
[16] M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class. II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR
[17] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[18] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl
[19] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[20] A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Cambridge Scientific Publ., Cambridge, 2006, 1–67 | MR | Zbl
[21] E. Miranda, N. T. Zung, “Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems”, Ann. Sci. École Norm. Sup. (4), 37:6 (2004), 819–839 | DOI | MR | Zbl
[22] N. T. Zung, “Torus actions and integrable systems”, Topological methods in the theory of integrable systems, Cambridge Scientific Publ., Cambridge, 2006, 289–328 | MR | Zbl
[23] M. P. Kharlamov, E. G. Shvedov, “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh volchka Kovalevskoi v dvoinom pole”, Mekhanika tverdogo tela, 2004, no. 34, 59–65 | MR
[24] M. P. Kharlamov, E. G. Shvedov, “On the existence of motions in the generalized 4th Appelrot class”, Regul. Chaotic Dyn., 11:3 (2006), 337–342 | DOI | MR | Zbl
[25] M. P. Kharlamov, “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, Mekhanika tverdogo tela, 2002, no. 32, 32–38 | MR | Zbl
[26] M. P. Kharlamov, “Osobye periodicheskie resheniya obobschennogo sluchaya Delone”, Mekhanika tverdogo tela, 2006, no. 36, 23–33 | MR
[27] D. B. Zotev, “Phase topology of Appelrot class I of a Kowalewski top in a magnetic field”, J. Math. Sci., 149:1 (2008), 922–946 | DOI | MR | Zbl
[28] M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class”, Regul. Chaotic Dyn., 12:3 (2007), 267–280 | DOI | MR | Zbl
[29] M. P. Kharlamov, D. B. Zotev, “Non-degenerate energy surfaces of rigid body in two constant fields”, Regul. Chaotic Dyn., 10:1 (2005), 15–19 | DOI | MR | Zbl
[30] V. V. Kalashnikov, “Prostye giperbolicheskie osobennosti puassonovykh deistvii”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 115–126
[31] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | Zbl
[32] A. A. Oshemkov, “Saddle singularities of complexity 1 of integrable Hamiltonian systems”, Moscow Univ. Math. Bull., 66:2 (2011), 60–69 | DOI