On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators
Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 234-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a certain class of operators we present some necessary and sufficient conditions for a $J$-dissipative operator in a Kreǐn space to have maximal semidefinite invariant subspaces. We investigate the semigroup properties of restrictions of the operator to these invariant subspaces. These results are applied to the case when the operator admits a matrix representation with respect to the canonical decomposition of the space. The main conditions are formulated in terms of interpolation theory for Banach spaces. Bibliography: 25 titles.
Keywords: dissipative operator, Pontryagin space, Kreǐn space, invariant subspace, analytic semigroup.
@article{SM_2012_203_2_a4,
     author = {S. G. Pyatkov},
     title = {On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators},
     journal = {Sbornik. Mathematics},
     pages = {234--256},
     year = {2012},
     volume = {203},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a4/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 234
EP  - 256
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a4/
LA  - en
ID  - SM_2012_203_2_a4
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators
%J Sbornik. Mathematics
%D 2012
%P 234-256
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2012_203_2_a4/
%G en
%F SM_2012_203_2_a4
S. G. Pyatkov. On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 234-256. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a4/

[1] T. Ya. Azizov, I. S. Iokhvidov, Linear operators in space with an indefinite metric, Pure Appl. Math. (N. Y.), Wiley, Chichester, 1989 | MR | MR | Zbl | Zbl

[2] L. S. Pontryagin, “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8:6 (1944), 243–280 | MR | Zbl

[3] M. G. Krein, “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii prostranstv s indefinitnoi metrikoi”, UMN, 5:2 (1950), 180–190 | MR | Zbl

[4] M. G. Krejn, “A new application of the fixed-point principle in the theory of operators on a space with indefinite metric”, Soviet Math. Dokl., 5 (1964), 224–228 ; “О дефектных подпространствах и обобщенных резольвентах эрмитова оператора в пространстве $\Pi_\varkappa$”, окончание статьи, Функц. анализ и его прил., 5:3, 54–69 | MR | Zbl | MR | Zbl

[5] M. G. Krein, G. K. Langer, “Defect subspaces and generalized resolvents of an Hermitian operator in the space $\Pi_\varkappa$”, Funct. Anal. Appl., 5:2 (1971), 136–146 ; “Defect subspaces and generalized resolvents of an Hermitian operator in the space $\Pi_\varkappa$”, end of the paper, Funct. Anal. Appl., 5:3, 217–228 | DOI | MR | MR | Zbl | Zbl

[6] H. Langer, “On $J$-Hermitian operators”, Soviet Math. Dokl., 1 (1960), 1052–1055 | MR | Zbl

[7] H. Langer, “Eine Verallgemeinerung eines Satzes von L. S. Pontrjagin”, Math. Ann., 152:5 (1963), 434–436 | DOI | MR | Zbl

[8] H. Langer, “Invariant subspaces for a class of operators in spaces with indefinite metric”, J. Functional Analysis, 19:3 (1975), 232–241 | DOI | MR | Zbl

[9] T. Ja. Azizov, “Invariant subspaces and completeness criteria for the root vector system of $J$-dissipative operators in the Pontrjagin space $\Pi_k$”, Soviet Math. Dokl., 12 (1971), 1513–1516 | MR | Zbl

[10] T. J. Azizov, “Dissipative operators in a Hilbert space with an indefinite metric”, Math. USSR-Izv., 7:3 (1973), 639–660 | DOI | MR | Zbl

[11] T. Ya. Azizov, V. A. Khatskevich, “A theorem on existence of invariant subspaces for $J$-binoncontractive operators”, Recent advances in operator theory in Hilbert and Krein spaces (TU Berlin, Germany, 2007), Oper. Theory Adv. Appl., 198, Birkhäuser, Basel, 2010, 41–49 | MR | Zbl

[12] T. Ya. Azizov, I. V. Gridneva, “On invariant subspaces of $J$-dissipative operators”, Ukr. Math. Bull., 6:1 (2009), 1–13 | MR

[13] A. A. Shkalikov, “Invariant subspaces of dissipative operators in a space with indefinite metric”, Proc. Steklov Inst. Math., 248 (2005), 287–296 | MR | Zbl

[14] A. A. Shkalikov, “Dissipative operators in the Krein space. Invariant subspaces and properties of restrictions”, Funct. Anal. Appl., 41:2 (2007), 154–167 | DOI | MR | Zbl

[15] S. G. Pyatkov, “Maximal semidefinite invariant subspaces for some classes of operators”, Conditionally well-posed problems, TVP/TSP, Utrecht, 1993, 336–338

[16] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie operatorno-differentsialnye uravneniya, Nauka, Novosibirsk, 2000 | MR | Zbl

[17] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht, 2002 | MR | Zbl

[18] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, North-Holland, Amsterdam–New York, 1978 | MR | MR | Zbl | Zbl

[19] M. Haase, The functional calculus for sectorial operators, Oper. Theory Adv. Appl., 169, Birkhäuser, Basel, 2006 | MR | Zbl

[20] P. Grisvard, “Commutativite de deux foncteurs d'interpolation et applications”, J. Math. Pures Appl. (9), 45:2 (1966), 143–206 | MR | Zbl

[21] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, Berlin, 2000 | MR | Zbl

[22] P. Ausher, A. McIntosh, A. Nahmod, “Holomorphic functional calculi of operators, quadratic estimates and interpolation”, Indiana Univ. Math. J., 46:2 (1997), 375–403 | DOI | MR | Zbl

[23] Yu. M. Berezans'kiǐ, Expansions in eigenfunctions of selfadjoint operators, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[24] P. Grisvard, “An approach to the singular solutions of elliptic problems via the theory of differential equations in Banach spaces”, Differential equations in Banach spaces (Bologna, Italy, 1985), Lecture Notes in Math., 1223, Springer-Verlag, Berlin, 1986, 131–156 | DOI | MR | Zbl

[25] P. C. Kunstmann, L. Weis, “Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus”, Functional analytic methods for evolution equations (Levico Terme, Trento, Italy, 2001), Lecture Notes in Math., 1855, Springer-Verlag, Berlin, 2004, 65–311 | DOI | MR | Zbl