Parity and cobordism of free knots
Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 196-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple invariant is constructed which obstructs a free knot to be truncated. In particular, this invariant provides an obstruction to the truncatedness of curves immersed in two-dimensional surfaces. A curve on an oriented two-dimensional surface $S_g$ is referred to as truncated (null-cobordant) if there exists a three-dimensional manifold $M$ with boundary $S_g$ and a smooth proper map of a two-disc to $M$ such that the image of the boundary of the disc coincides with the curve. The problem of truncatedness for free knots is solved in this paper using the notion of parity recently introduced by the author. Bibliography: 12 titles.
Keywords: knot, free knot, cobordism, parity
Mots-clés : surface.
@article{SM_2012_203_2_a2,
     author = {V. O. Manturov},
     title = {Parity and cobordism of free knots},
     journal = {Sbornik. Mathematics},
     pages = {196--223},
     year = {2012},
     volume = {203},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a2/}
}
TY  - JOUR
AU  - V. O. Manturov
TI  - Parity and cobordism of free knots
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 196
EP  - 223
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a2/
LA  - en
ID  - SM_2012_203_2_a2
ER  - 
%0 Journal Article
%A V. O. Manturov
%T Parity and cobordism of free knots
%J Sbornik. Mathematics
%D 2012
%P 196-223
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2012_203_2_a2/
%G en
%F SM_2012_203_2_a2
V. O. Manturov. Parity and cobordism of free knots. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 196-223. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a2/

[1] J. S. Carter, “Closed curves that never extend to proper maps of disks”, Proc. Amer. Math. Soc., 113:2 (1991), 879–888 | DOI | MR | Zbl

[2] V. Turaev, “Cobordisms of words”, Commun. Contemp. Math., 10, suppl. 1 (2008), 927–972 | DOI | MR | Zbl

[3] V. G. Turaev, Virtual open strings and their cobordisms, arXiv: math.GT/0311185

[4] V. O. Manturov, On free knots, arXiv: 0901.2214

[5] V. O. Manturov, “Parity in knot theory”, Sb. Math., 201:5 (2010), 693–733 | DOI | MR | Zbl

[6] A. Gibson, “Homotopy invariants of Gauss words”, Math. Ann., 349:4 (2011), 871–887 | DOI | MR | Zbl

[7] V. O. Manturov, On free knots and links, arXiv: 0902.0127

[8] D. P. Il'yutko, V. O. Manturov, “Cobordisms of free knots”, Dokl. Math., 80:3 (2009), 844–846 | DOI | MR | Zbl

[9] V. O. Manturov, O. V. Manturov, “Free knots and groups”, J. Knot Theory Ramifications, 19:2 (2010), 181–186 | DOI | MR | Zbl

[10] V. O. Manturov, “Free knots and parity”, Introductory lectures on knot theory (Trieste, Italy, 2009), World Scientific, Hackensack, NJ, 2011, 321–345 | Zbl

[11] D. Yu. Krylov, V. O. Manturov, Parity and relative parity in knot theory, arXiv: 1101.0128

[12] V. O Manturov, “Svobodnye uzly, gruppy i invarianty konechnogo poryadka”, Tr. MMO, 72, no. 2, URSS, M., 2011, 207–222