Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide
Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 153-182
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of an eigenvalue embedded in the continuous spectrum is proved for the Neumann problem for Helmholtz's equation in a two-dimensional waveguide with two outlets to infinity which are half-strips of width
$1$ and $1-\varepsilon$, where $\varepsilon>0$ is a small parameter. The width function of the part of the waveguide connecting these outlets is of order $\sqrt{\varepsilon}$; it is defined as a linear combination of three fairly arbitrary functions, whose coefficients are obtained from a certain nonlinear equation. The result is derived from an asymptotic analysis of an auxiliary object, the augmented scattering matrix.
Bibliography: 29 titles.
Keywords:
acoustic waveguide, water waves in a channel, eigenvalues in the continuous spectrum, asymptotic behaviour, augmented scattering matrix.
@article{SM_2012_203_2_a0,
author = {G. Cardone and S. A. Nazarov and K. Ruotsalainen},
title = {Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide},
journal = {Sbornik. Mathematics},
pages = {153--182},
publisher = {mathdoc},
volume = {203},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/}
}
TY - JOUR AU - G. Cardone AU - S. A. Nazarov AU - K. Ruotsalainen TI - Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide JO - Sbornik. Mathematics PY - 2012 SP - 153 EP - 182 VL - 203 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/ LA - en ID - SM_2012_203_2_a0 ER -
%0 Journal Article %A G. Cardone %A S. A. Nazarov %A K. Ruotsalainen %T Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide %J Sbornik. Mathematics %D 2012 %P 153-182 %V 203 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/ %G en %F SM_2012_203_2_a0
G. Cardone; S. A. Nazarov; K. Ruotsalainen. Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 153-182. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/