Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide
Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 153-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of an eigenvalue embedded in the continuous spectrum is proved for the Neumann problem for Helmholtz's equation in a two-dimensional waveguide with two outlets to infinity which are half-strips of width $1$ and $1-\varepsilon$, where $\varepsilon>0$ is a small parameter. The width function of the part of the waveguide connecting these outlets is of order $\sqrt{\varepsilon}$; it is defined as a linear combination of three fairly arbitrary functions, whose coefficients are obtained from a certain nonlinear equation. The result is derived from an asymptotic analysis of an auxiliary object, the augmented scattering matrix. Bibliography: 29 titles.
Keywords: acoustic waveguide, water waves in a channel, eigenvalues in the continuous spectrum, asymptotic behaviour, augmented scattering matrix.
@article{SM_2012_203_2_a0,
     author = {G. Cardone and S. A. Nazarov and K. Ruotsalainen},
     title = {Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide},
     journal = {Sbornik. Mathematics},
     pages = {153--182},
     year = {2012},
     volume = {203},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/}
}
TY  - JOUR
AU  - G. Cardone
AU  - S. A. Nazarov
AU  - K. Ruotsalainen
TI  - Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 153
EP  - 182
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/
LA  - en
ID  - SM_2012_203_2_a0
ER  - 
%0 Journal Article
%A G. Cardone
%A S. A. Nazarov
%A K. Ruotsalainen
%T Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide
%J Sbornik. Mathematics
%D 2012
%P 153-182
%V 203
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/
%G en
%F SM_2012_203_2_a0
G. Cardone; S. A. Nazarov; K. Ruotsalainen. Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide. Sbornik. Mathematics, Tome 203 (2012) no. 2, pp. 153-182. http://geodesic.mathdoc.fr/item/SM_2012_203_2_a0/

[1] R. Mittra, S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan, New York, 1971 | Zbl | Zbl

[2] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[3] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl

[4] M. S. Birman, M. Z. Solomyak, Spectral-theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl

[5] V. P. Maslov, “An asymptotic expression for the eigenfunctions of the equation $\Delta u+k^2u=0$ with boundary conditions on equidistant curves and the propagation of electromagnetic waves in a waveguide”, Soviet Physics. Dokl., 3 (1959), 1132–1135 | MR | Zbl

[6] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[7] W. Bulla, F. Gesztesy, W. Renrer, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[8] R. R. Gadyl'shin, “Local perturbations of quantum waveguides”, Theoret. and Math. Phys., 145:3 (2005), 1678–1690 | DOI | MR | Zbl

[9] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Sib. Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl

[10] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[11] I. V. Kamotskii, S. A. Nazarov, “Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I”, Sb. Math., 190:1 (1999), 111–141 | DOI | MR | Zbl

[12] I. V. Kamotskii, S. A. Nazarov, “Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II”, Sb. Math., 190:2 (1999), 205–231 | DOI | MR | Zbl

[13] S. A. Nazarov, B. A. Plamenevskij, “Selfadjoint elliptic problems: The scattering operator and the polarization operator on edges of the boundary”, St. Petersburg Math. J., 6:4 (1995), 839–863 | MR | Zbl | Zbl

[14] I. V. Kamotskii, S. A. Nazarov, “The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain”, J. Math. Sci. (New York), 111:4 (2002), 3657–3666 | DOI | MR | Zbl

[15] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Quart. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[16] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave motion, 45:1–2 (2007), 16–29 | DOI | MR

[17] C. H. Wilcox, Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer-Verlag, New York, 1984 | MR | Zbl

[18] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl

[19] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1963, 219–292

[20] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N. Y.), 9, Applications in analysis and partial differential equations, Springer-Verlag, New York, 2009, 261–309 | MR | Zbl

[21] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl

[22] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77:1 (1978), 25–82 | DOI | MR | Zbl

[23] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl

[24] S. A. Nazarov, A. V. Shanin, “Calculation of characteristics of trapped modes in $T$-shaped waveguides”, Comput. Math. Math. Phys., 51:1 (2011), 96–110 | DOI | MR | Zbl

[25] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl

[26] S. A. Nazarov, “Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary”, Comput. Math. Math. Phys., 46:12 (2006), 2164–2175 | DOI | MR

[27] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI:, 1992 | MR | MR | Zbl | Zbl

[28] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl

[29] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya, Problemy matem. fiziki, 13, Izd-vo LGU, L., 1991, 192–244 | MR