@article{SM_2012_203_1_a5,
author = {I. Kh. Sabitov},
title = {Isometric surfaces with a~common mean curvature and the problem of {Bonnet} pairs},
journal = {Sbornik. Mathematics},
pages = {111--152},
year = {2012},
volume = {203},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a5/}
}
I. Kh. Sabitov. Isometric surfaces with a common mean curvature and the problem of Bonnet pairs. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 111-152. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a5/
[1] O. Bonnet, “Mémoire sur la théorie des surfaces applicables”, J.École Polytechnique, 42 (1867), 72–92
[2] É. Cartan, “Sur les couples de surfaces applicables avec conservation des courbures principales”, Bull. Sci. Math. (2), 66 (1942), 55–72, 74–85 | MR | Zbl
[3] K. M. Belov, “Bending of surfaces with retention of mean curvature”, Siberian Math. J., 9:1 (1968), 146–149 | DOI | MR | Zbl
[4] Sh.-Sh. Chern, “Deformation of surfaces preserving principal curvatures”, Differential geometry and complex analysis, Springer, Berlin, 1985, 155–163 | MR | Zbl
[5] X. Chen, Ch.-K. Peng, “Deformation of surfaces preserving principal curvatures”, Differential geometry and topology (Tianjin, 1986–1987), Lecture Notes of Math., 1369, Springer-Verlag, Berlin, 1989, 63–70 | DOI | MR | Zbl
[6] G. I. Kamberov, “Quadratic differentials and surface shape”, Rend. Semin. Mat. Messina, Ser. II Suppl., 2000, 199–210 | Zbl
[7] G. Kamberov, F. Pedit, U. Pinkall, “Bonnet pairs and isothermic surfaces”, Duke Math. J., 92:3 (1998), 637–644 | DOI | MR | Zbl
[8] A. I. Bobenko, “Exploring surfaces through methods from the theory of integrable systems: the Bonnet problem”, Surveys on geometry and integrable systems (Tokyo, Japan, 2000), Adv. Stud. Pure Math., 51, Math. Soc. Japan, Tokyo, 2008, 1–53 | MR | Zbl
[9] A. I. Bobenko, U. Eitner, Painlevé equations in the differential geometry of surfaces, Lecture Notes in Math., 1753, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[10] R. Tribuzy, “A characterization of tori with constant mean curvature in space form”, Bull. of Braz. Math. Soc., 11:2 (1980), 259–274 | DOI | MR | Zbl
[11] H. B. Lawson, jr., R. Tribuzy, “On the mean curvature function for compact surfaces”, J. Differential Geom., 16:1 (1981), 179–183 | MR | Zbl
[12] I. N. Vekua, Generalized analytic functions, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1962 | MR | MR | Zbl | Zbl
[13] F. D. Gakhov, Boundary value problems, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1966 | MR | MR | Zbl | Zbl
[14] Ph. Hartman, A. Wintner, “Gaussian curvature and local embedding”, Amer. J. Math., 73:4 (1951), 876–884 | DOI | MR | Zbl
[15] I. Kh. Sabitov, S. Z. Shefel', “The connections between the order of smoothness of a surface and its metric”, Siberian Math. J., 17:4 (1976), 687–694 | DOI | MR | Zbl | Zbl
[16] I. Kh. Sabitov, “Two-dimensional manifolds with metrics of revolution”, Sb. Math., 191:10 (2000), 1507–1525 | DOI | MR | Zbl
[17] R. Alexander, “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288:2 (1985), 661–678 | DOI | MR | Zbl
[18] F. J. Almgren, jr., I. Rivin, “The mean curvature integral is invariant under bending”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Univ. of Warwick, Warwick, 1998, 1–21 | MR | Zbl
[19] J.-M. Schlenker, R. Souam, “Higher Schläfli formulas and applications”, Compositio Math., 135:1 (2003), 1–24 | DOI | MR | Zbl
[20] V. A. Alexandrov, “On the total mean curvature of a nonrigid surface”, Siberian Math. J., 50:5 (2009), 757–759 | DOI | MR | Zbl
[21] I. Kh. Sabitov, “Some integral formulas for compact surfaces”, TWMS J. Pure Appl. Math., 1:1 (2010), 123–131 | MR | Zbl
[22] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei”, UMN, 3:2 (1948), 47–158 | MR | Zbl
[23] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl
[24] I. Kh. Sabitov, “A solution of the Bonnet pairs problem”, Dokl. Math., 82:2 (2010), 722–725 | DOI | MR | Zbl
[25] W. K. Hayman, P. B. Kennedy, Subharmonic functions, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl
[26] T. Y. Thomas, “Algebraic determination of the second fundamental form of a surface by its mean curvature”, Bull. Amer. Math. Soc., 51 (1945), 390–399 | DOI | MR | Zbl