Isometric surfaces with a common mean curvature and the problem of Bonnet pairs
Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 111-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Simple methods are used to give new proofs, and sometimes to make them more precise, of basic theorems on isometric surfaces with a common mean curvature, which are usually called Bonnet pairs. The considerations are conducted under the assumption of minimally admissible smoothness of the objects in question, and certain necessary or sufficient criteria are given for the non-existence of Bonnet pairs with a common non-constant mean curvature among compact surfaces. Bibliography: 26 titles.
Keywords: surfaces, isometry, mean curvature, invariance.
@article{SM_2012_203_1_a5,
     author = {I. Kh. Sabitov},
     title = {Isometric surfaces with a~common mean curvature and the problem of {Bonnet} pairs},
     journal = {Sbornik. Mathematics},
     pages = {111--152},
     year = {2012},
     volume = {203},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a5/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Isometric surfaces with a common mean curvature and the problem of Bonnet pairs
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 111
EP  - 152
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_1_a5/
LA  - en
ID  - SM_2012_203_1_a5
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Isometric surfaces with a common mean curvature and the problem of Bonnet pairs
%J Sbornik. Mathematics
%D 2012
%P 111-152
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2012_203_1_a5/
%G en
%F SM_2012_203_1_a5
I. Kh. Sabitov. Isometric surfaces with a common mean curvature and the problem of Bonnet pairs. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 111-152. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a5/

[1] O. Bonnet, “Mémoire sur la théorie des surfaces applicables”, J.École Polytechnique, 42 (1867), 72–92

[2] É. Cartan, “Sur les couples de surfaces applicables avec conservation des courbures principales”, Bull. Sci. Math. (2), 66 (1942), 55–72, 74–85 | MR | Zbl

[3] K. M. Belov, “Bending of surfaces with retention of mean curvature”, Siberian Math. J., 9:1 (1968), 146–149 | DOI | MR | Zbl

[4] Sh.-Sh. Chern, “Deformation of surfaces preserving principal curvatures”, Differential geometry and complex analysis, Springer, Berlin, 1985, 155–163 | MR | Zbl

[5] X. Chen, Ch.-K. Peng, “Deformation of surfaces preserving principal curvatures”, Differential geometry and topology (Tianjin, 1986–1987), Lecture Notes of Math., 1369, Springer-Verlag, Berlin, 1989, 63–70 | DOI | MR | Zbl

[6] G. I. Kamberov, “Quadratic differentials and surface shape”, Rend. Semin. Mat. Messina, Ser. II Suppl., 2000, 199–210 | Zbl

[7] G. Kamberov, F. Pedit, U. Pinkall, “Bonnet pairs and isothermic surfaces”, Duke Math. J., 92:3 (1998), 637–644 | DOI | MR | Zbl

[8] A. I. Bobenko, “Exploring surfaces through methods from the theory of integrable systems: the Bonnet problem”, Surveys on geometry and integrable systems (Tokyo, Japan, 2000), Adv. Stud. Pure Math., 51, Math. Soc. Japan, Tokyo, 2008, 1–53 | MR | Zbl

[9] A. I. Bobenko, U. Eitner, Painlevé equations in the differential geometry of surfaces, Lecture Notes in Math., 1753, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[10] R. Tribuzy, “A characterization of tori with constant mean curvature in space form”, Bull. of Braz. Math. Soc., 11:2 (1980), 259–274 | DOI | MR | Zbl

[11] H. B. Lawson, jr., R. Tribuzy, “On the mean curvature function for compact surfaces”, J. Differential Geom., 16:1 (1981), 179–183 | MR | Zbl

[12] I. N. Vekua, Generalized analytic functions, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1962 | MR | MR | Zbl | Zbl

[13] F. D. Gakhov, Boundary value problems, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1966 | MR | MR | Zbl | Zbl

[14] Ph. Hartman, A. Wintner, “Gaussian curvature and local embedding”, Amer. J. Math., 73:4 (1951), 876–884 | DOI | MR | Zbl

[15] I. Kh. Sabitov, S. Z. Shefel', “The connections between the order of smoothness of a surface and its metric”, Siberian Math. J., 17:4 (1976), 687–694 | DOI | MR | Zbl | Zbl

[16] I. Kh. Sabitov, “Two-dimensional manifolds with metrics of revolution”, Sb. Math., 191:10 (2000), 1507–1525 | DOI | MR | Zbl

[17] R. Alexander, “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288:2 (1985), 661–678 | DOI | MR | Zbl

[18] F. J. Almgren, jr., I. Rivin, “The mean curvature integral is invariant under bending”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Univ. of Warwick, Warwick, 1998, 1–21 | MR | Zbl

[19] J.-M. Schlenker, R. Souam, “Higher Schläfli formulas and applications”, Compositio Math., 135:1 (2003), 1–24 | DOI | MR | Zbl

[20] V. A. Alexandrov, “On the total mean curvature of a nonrigid surface”, Siberian Math. J., 50:5 (2009), 757–759 | DOI | MR | Zbl

[21] I. Kh. Sabitov, “Some integral formulas for compact surfaces”, TWMS J. Pure Appl. Math., 1:1 (2010), 123–131 | MR | Zbl

[22] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei”, UMN, 3:2 (1948), 47–158 | MR | Zbl

[23] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl

[24] I. Kh. Sabitov, “A solution of the Bonnet pairs problem”, Dokl. Math., 82:2 (2010), 722–725 | DOI | MR | Zbl

[25] W. K. Hayman, P. B. Kennedy, Subharmonic functions, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl

[26] T. Y. Thomas, “Algebraic determination of the second fundamental form of a surface by its mean curvature”, Bull. Amer. Math. Soc., 51 (1945), 390–399 | DOI | MR | Zbl