Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods
Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 88-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved: if approximations in the norm of $L_\infty$ (of $H_1$) of functions in the classes $H_\infty^\Omega$ (in $H_1^\Omega$, respectively) by some linear operators have the same order of magnitude as the best approximations, then the set of norms of these operators is unbounded. Also Bernstein's and the Jackson-Nikol'skiǐ inequalities are proved for trigonometric polynomials with spectra in the sets $Q(N)$ (in $\varGamma(N,\Omega)$). Bibliography: 15 titles.
Keywords: modulus of continuity, linear approximations, Bernstein's inequalities, Nikol'skiǐ's inequalities, functions of several variables.
@article{SM_2012_203_1_a4,
     author = {N. N. Pustovoitov},
     title = {Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods},
     journal = {Sbornik. Mathematics},
     pages = {88--110},
     publisher = {mathdoc},
     volume = {203},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/}
}
TY  - JOUR
AU  - N. N. Pustovoitov
TI  - Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 88
EP  - 110
VL  - 203
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/
LA  - en
ID  - SM_2012_203_1_a4
ER  - 
%0 Journal Article
%A N. N. Pustovoitov
%T Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods
%J Sbornik. Mathematics
%D 2012
%P 88-110
%V 203
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/
%G en
%F SM_2012_203_1_a4
N. N. Pustovoitov. Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 88-110. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/