Approximation of periodic functions in the classes $H_q^\Omega$ by linear methods
Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 88-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following result is proved: if approximations in the norm of $L_\infty$ (of $H_1$) of functions in the classes $H_\infty^\Omega$ (in $H_1^\Omega$, respectively) by some linear operators have the same order of magnitude as the best approximations, then the set of norms of these operators is unbounded. Also Bernstein's and the Jackson-Nikol'skiǐ inequalities are proved for trigonometric polynomials with spectra in the sets $Q(N)$ (in $\varGamma(N,\Omega)$). Bibliography: 15 titles.
Keywords: modulus of continuity, linear approximations, Bernstein's inequalities, Nikol'skiǐ's inequalities, functions of several variables.
@article{SM_2012_203_1_a4,
     author = {N. N. Pustovoitov},
     title = {Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods},
     journal = {Sbornik. Mathematics},
     pages = {88--110},
     year = {2012},
     volume = {203},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/}
}
TY  - JOUR
AU  - N. N. Pustovoitov
TI  - Approximation of periodic functions in the classes $H_q^\Omega$ by linear methods
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 88
EP  - 110
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/
LA  - en
ID  - SM_2012_203_1_a4
ER  - 
%0 Journal Article
%A N. N. Pustovoitov
%T Approximation of periodic functions in the classes $H_q^\Omega$ by linear methods
%J Sbornik. Mathematics
%D 2012
%P 88-110
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/
%G en
%F SM_2012_203_1_a4
N. N. Pustovoitov. Approximation of periodic functions in the classes $H_q^\Omega$ by linear methods. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 88-110. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/

[1] V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | Zbl | Zbl

[2] A. S. Romanyuk, “Approximability of the classes $B_{p,\theta}^r$ of periodic functions of several variables by linear methods and best approximations”, Sb. Math., 195:2 (2004), 237–261 | DOI | MR | Zbl

[3] N. N. Pustovoitov, “Approximation of multidimensional functions with a given majorant of mixed moduli of continuity”, Math. Notes, 65:1 (1999), 89–98 | DOI | MR | Zbl

[4] N. N. Pustovoitov, “Ortopoperechniki klassov mnogomernykh periodicheskikh funktsii, mazhoranta smeschannykh modulei nepreryvnosti kotorykh soderzhit kak stepennye, tak i logarifmicheskie mnozhiteli”, Anal. Math., 34:3 (2008), 187–224 | DOI | MR | Zbl

[5] N. N. Pustovoitov, “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem neprepyvnosti”, Anal. Math., 20:1 (1994), 35–48 | DOI | MR | Zbl

[6] K. I. Babenko, “Approximation by trigonometric polynomials in a certain class of periodic functions of several variables”, Soviet Math. Dokl., 1 (1960), 672–675 | MR | Zbl

[7] S. A. Telyakovskii, “Ob otsenkakh proizvodnykh trigonometricheskikh polinomov mnogikh peremennykh”, Sib. matem. zhurnal, 4:6 (1963), 1404–1411 | Zbl

[8] S. A. Telyakovskij, “Some estimates for trigonometric series with quasi-convex coefficients”, Amer. Math. Soc. Transl., Ser. 2, 86 (1970), 109–131 | MR | Zbl | Zbl

[9] B. S. Mityagin, “Priblizhenie funktsii v prostranstvakh $L^p$ i $C$ na tore”, Matem. sb., 58(100):4 (1962), 397–414 | MR | Zbl

[10] N. S. Nikol'skaya, “The approximation in the $L_p$ metric of differentiable functions of several variables by Fourier sums”, Siberian Math. J., 15:2 (1974), 282–295 | DOI | MR | Zbl | Zbl

[11] Eh. S. Belinskij, Eh. M. Galeev, “On the minimum of norms of mixed derivatives of trigonometric polynomials with given number of harmonics”, Mosc. Univ. Math. Bull., 46:2 (1991), 4–7 | MR | Zbl

[12] M. B. Sikhov, “Inequalities of Bernstein and Jackson–Nikol'skii type and estimates of the norms of derivatives of Dirichlet kernels”, Math. Notes, 80:1 (2006), 91–100 | DOI | MR | Zbl

[13] S. M. Nikolskii, “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, Izd-vo AN SSSR, M., 1951, 244–278 | MR | Zbl

[14] E. M. Galeev, “Approximation by Fourier sums of classes of functions with several bounded derivatives”, Math. Notes, 23:2 (1978), 109–117 | DOI | MR | Zbl | Zbl

[15] É. S. Belinskii, “Two extremal problems for trigonometric polynomials with a prescribed number of harmonics”, Math. Notes, 49:1 (1991), 10–14 | DOI | MR | Zbl