Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 88-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following result is proved: if approximations in the norm of $L_\infty$ (of $H_1$) of functions in the classes $H_\infty^\Omega$ (in $H_1^\Omega$, respectively) by some linear operators have the same order of magnitude as the best approximations, then the set of norms of these operators is unbounded. Also Bernstein's and the Jackson-Nikol'skiǐ inequalities are proved for trigonometric polynomials with spectra in the sets $Q(N)$ (in $\varGamma(N,\Omega)$).
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
modulus of continuity, linear approximations, Bernstein's inequalities, Nikol'skiǐ's inequalities, functions of several variables.
                    
                    
                    
                  
                
                
                @article{SM_2012_203_1_a4,
     author = {N. N. Pustovoitov},
     title = {Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods},
     journal = {Sbornik. Mathematics},
     pages = {88--110},
     publisher = {mathdoc},
     volume = {203},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/}
}
                      
                      
                    N. N. Pustovoitov. Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 88-110. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a4/
