Mots-clés : moment map, Liouville foliation
@article{SM_2012_203_1_a1,
author = {N. S. Logacheva},
title = {Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the {Kovalevskaya-Yehia}},
journal = {Sbornik. Mathematics},
pages = {28--59},
year = {2012},
volume = {203},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a1/}
}
N. S. Logacheva. Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 28-59. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a1/
[1] H. Yehia, “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl
[2] Kh. M. Yakhya, “Novye integriruemye sluchai zadachi o dvizhenii girostata”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 4 (1987), 88–90
[3] P. E. Ryabov, M. P. Kharlamov, “Bifurkatsii pervykh integralov v sluchae Kovalevskoi–Yakhi”, Regulyarnaya i khaoticheskaya dinamika, 2:2 (1997), 25–40 | MR | Zbl
[4] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47:6 (1983), 737–743 | DOI | MR | Zbl
[5] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl
[6] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR
[7] A. V. Bolsinov, P. Kh. Rikhter, A. T. Fomenko, “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | MR | Zbl
[8] P. V. Morozov, “Calculation of the Fomenko–Zieschang invariants in the Kovalevskaya-Yehia integrable case”, Sb. Math., 198:8 (2007), 1119–1143 | DOI | MR | Zbl
[9] I. N. Gashenenko, “Integralnye mnogoobraziya i topologicheskie invarianty odnogo sluchaya dvizheniya girostata”, Mekhanika tverdogo tela, 29 (1997), 1–7 | MR | Zbl
[10] P. E. Ryabov, Bifurkatsionnoe mnozhestvo zadachi o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki v sluchae Kovalevskoi–Yakhi, Dis. ... kand. fiz.-matem. nauk, M., MGU, 1997
[11] P. E. Ryabov, “Analiticheskaya klassifikatsiya osobennostei integriruemogo sluchaya Kovalevskoi–Yakhi”, Vestn. Udmurtsk. un-ta. Matem., mekh., kompyut. nauki, 4 (2010), 25–30
[12] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vekt. i tenz. analizu, 25:2 (1993), 23–109 | Zbl
[13] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–27 | MR | Zbl
[14] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[15] P. P. Andreyanov, K. E. Dushin, “Bifurkatsionnye mnozhestva v zadache Kovalevskoi–Yakhi”, Matem. sb. (to appear)
[16] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[17] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | Zbl