Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia
Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 28-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a topological analysis of the Kovalevskaya-Yehia integrable case in rigid body dynamics. It is proved that the integral has the Bott property on isoenergy surfaces of the system; the topology of the Liouville foliation in a neighbourhood of degenerate 1-dimensional orbits and equilibria (points of rank 0) is also described. In particular, marked loop molecules are constructed for degenerate 1-dimensional orbits, and a representation in the form of an almost direct product is found for nondegenerate singularities of rank 0. Bibliography: 17 titles.
Keywords: nondegenerate equilibria, degenerate 1-dimensional orbits, loop molecules.
Mots-clés : moment map, Liouville foliation
@article{SM_2012_203_1_a1,
     author = {N. S. Logacheva},
     title = {Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the {Kovalevskaya-Yehia}},
     journal = {Sbornik. Mathematics},
     pages = {28--59},
     year = {2012},
     volume = {203},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_1_a1/}
}
TY  - JOUR
AU  - N. S. Logacheva
TI  - Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 28
EP  - 59
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_1_a1/
LA  - en
ID  - SM_2012_203_1_a1
ER  - 
%0 Journal Article
%A N. S. Logacheva
%T Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia
%J Sbornik. Mathematics
%D 2012
%P 28-59
%V 203
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2012_203_1_a1/
%G en
%F SM_2012_203_1_a1
N. S. Logacheva. Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia. Sbornik. Mathematics, Tome 203 (2012) no. 1, pp. 28-59. http://geodesic.mathdoc.fr/item/SM_2012_203_1_a1/

[1] H. Yehia, “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl

[2] Kh. M. Yakhya, “Novye integriruemye sluchai zadachi o dvizhenii girostata”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 4 (1987), 88–90

[3] P. E. Ryabov, M. P. Kharlamov, “Bifurkatsii pervykh integralov v sluchae Kovalevskoi–Yakhi”, Regulyarnaya i khaoticheskaya dinamika, 2:2 (1997), 25–40 | MR | Zbl

[4] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47:6 (1983), 737–743 | DOI | MR | Zbl

[5] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl

[6] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[7] A. V. Bolsinov, P. Kh. Rikhter, A. T. Fomenko, “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | MR | Zbl

[8] P. V. Morozov, “Calculation of the Fomenko–Zieschang invariants in the Kovalevskaya-Yehia integrable case”, Sb. Math., 198:8 (2007), 1119–1143 | DOI | MR | Zbl

[9] I. N. Gashenenko, “Integralnye mnogoobraziya i topologicheskie invarianty odnogo sluchaya dvizheniya girostata”, Mekhanika tverdogo tela, 29 (1997), 1–7 | MR | Zbl

[10] P. E. Ryabov, Bifurkatsionnoe mnozhestvo zadachi o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki v sluchae Kovalevskoi–Yakhi, Dis. ... kand. fiz.-matem. nauk, M., MGU, 1997

[11] P. E. Ryabov, “Analiticheskaya klassifikatsiya osobennostei integriruemogo sluchaya Kovalevskoi–Yakhi”, Vestn. Udmurtsk. un-ta. Matem., mekh., kompyut. nauki, 4 (2010), 25–30

[12] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vekt. i tenz. analizu, 25:2 (1993), 23–109 | Zbl

[13] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–27 | MR | Zbl

[14] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[15] P. P. Andreyanov, K. E. Dushin, “Bifurkatsionnye mnozhestva v zadache Kovalevskoi–Yakhi”, Matem. sb. (to appear)

[16] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[17] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | Zbl