Exact null controllability of degenerate evolution equations with scalar control
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1817-1836 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for the exact null controllability of a degenerate linear evolution equation with scalar control are obtained. These general results are used to examine the exact null controllability of the Dzektser equation in the theory of seepage. Bibliography: 13 titles.
Keywords: degenerate evolution equation, exact controllability, family of exponentials, strongly minimal sequence.
@article{SM_2012_203_12_a7,
     author = {V. E. Fedorov and B. Shklyar},
     title = {Exact null controllability of degenerate evolution equations with scalar control},
     journal = {Sbornik. Mathematics},
     pages = {1817--1836},
     year = {2012},
     volume = {203},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a7/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - B. Shklyar
TI  - Exact null controllability of degenerate evolution equations with scalar control
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1817
EP  - 1836
VL  - 203
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a7/
LA  - en
ID  - SM_2012_203_12_a7
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A B. Shklyar
%T Exact null controllability of degenerate evolution equations with scalar control
%J Sbornik. Mathematics
%D 2012
%P 1817-1836
%V 203
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a7/
%G en
%F SM_2012_203_12_a7
V. E. Fedorov; B. Shklyar. Exact null controllability of degenerate evolution equations with scalar control. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1817-1836. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a7/

[1] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Monogr. Textbooks Pure Appl. Math., 256, Marcel Dekker, New York, 2003 | MR | MR | Zbl | Zbl

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2003 | MR | Zbl

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[4] V. E. Fedorov, “Degenerate strongly continuous semigroups of operators”, St. Petersburg Math. J., 12:3 (2001), 471–489 | MR | Zbl

[5] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Providence, RI, Amer. Math. Soc., 1957 | MR | MR | Zbl

[6] V. E. Fedorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestn. Chelyab. gos. un-ta. Ser. matem., mekh., astron., 2009, no. 20, 12–19 | MR

[7] N. K. Bari, “Biortogonalnye posledovatelnosti i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU, 4 (1951), 69–107 | MR

[8] B. Shklyar, “Exact null controllability of abstract differential equations by finitedimensional control and strongly minimal families of exponentials”, Differ. Equ. Appl., 3:2 (2011), 171–188 | DOI | MR | Zbl

[9] E. S. Dzekcer, “Generalization of the equation of motion of ground waters with a free surface”, Soviet Phys. Dokl., 17:2 (1972), 108–110 | Zbl

[10] V. E. Fedorov, O. A. Ruzakova, “On solvability of perturbed Sobolev type equations”, St. Petersburg Math. J., 20:4 (2009), 645–664 | DOI | MR | Zbl

[11] H. O. Fattorini, D. L. Russel, “Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations”, Quart. Appl. Math., 1974, 45–69 | MR | Zbl

[12] S. Kaczmarz, H. Steinhaus, Theorie der Orthogonalreihen, Chelsea Publ., New York, 1951 | MR | Zbl

[13] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR | Zbl