Direct and inverse problems for an operator with nonlocal potential
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1785-1807
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum of a selfadjoint operator which is a one-dimensional perturbation of the second derivative operator on a finite interval is analysed. It is shown that all the components of the one-dimensional perturbation can be recovered from two spectra up to complex conjugation.
Bibliography: 13 titles.
Keywords:
inverse spectral problem, one-dimensional perturbation of the second derivative operator.
@article{SM_2012_203_12_a5,
author = {V. A. Zolotarev},
title = {Direct and inverse problems for an operator with nonlocal potential},
journal = {Sbornik. Mathematics},
pages = {1785--1807},
publisher = {mathdoc},
volume = {203},
number = {12},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a5/}
}
V. A. Zolotarev. Direct and inverse problems for an operator with nonlocal potential. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1785-1807. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a5/