Direct and inverse problems for an operator with nonlocal potential
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1785-1807

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a selfadjoint operator which is a one-dimensional perturbation of the second derivative operator on a finite interval is analysed. It is shown that all the components of the one-dimensional perturbation can be recovered from two spectra up to complex conjugation. Bibliography: 13 titles.
Keywords: inverse spectral problem, one-dimensional perturbation of the second derivative operator.
@article{SM_2012_203_12_a5,
     author = {V. A. Zolotarev},
     title = {Direct and inverse problems for an operator with nonlocal potential},
     journal = {Sbornik. Mathematics},
     pages = {1785--1807},
     publisher = {mathdoc},
     volume = {203},
     number = {12},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a5/}
}
TY  - JOUR
AU  - V. A. Zolotarev
TI  - Direct and inverse problems for an operator with nonlocal potential
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1785
EP  - 1807
VL  - 203
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a5/
LA  - en
ID  - SM_2012_203_12_a5
ER  - 
%0 Journal Article
%A V. A. Zolotarev
%T Direct and inverse problems for an operator with nonlocal potential
%J Sbornik. Mathematics
%D 2012
%P 1785-1807
%V 203
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a5/
%G en
%F SM_2012_203_12_a5
V. A. Zolotarev. Direct and inverse problems for an operator with nonlocal potential. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1785-1807. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a5/