On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1761-1784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, for the case of 3-dimensional manifolds, we solve the Palis problem on finding necessary and sufficient conditions for a Morse-Smale cascade to embed in a topological flow. The set of such cascades is open in the space of all diffeomorphisms, while the set of arbitrary diffeomorphisms that embed in a smooth flow is nowhere dense. Also, we consider a class of diffeomorphisms that embed in a topological flow and prove that a complete topological invariant for this class is similar to the Andronova-Maier scheme and the Peixoto graph. Bibliography: 26 titles.
Keywords: Morse-Smale diffeomorphism, Morse-Smale cascade, embedding in a flow, dynamical systems on manifolds.
@article{SM_2012_203_12_a4,
     author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev and O. V. Pochinka},
     title = {On embedding a {Morse-Smale} diffeomorphism on a~3-manifold in a~topological flow},
     journal = {Sbornik. Mathematics},
     pages = {1761--1784},
     year = {2012},
     volume = {203},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - V. S. Medvedev
AU  - O. V. Pochinka
TI  - On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1761
EP  - 1784
VL  - 203
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/
LA  - en
ID  - SM_2012_203_12_a4
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A V. S. Medvedev
%A O. V. Pochinka
%T On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow
%J Sbornik. Mathematics
%D 2012
%P 1761-1784
%V 203
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/
%G en
%F SM_2012_203_12_a4
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev; O. V. Pochinka. On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1761-1784. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/

[1] W. R. Utz, “The embedding of homeomorphisms in continuous flows”, Topology Proc., 6:1 (1982), 159–177 | MR | Zbl

[2] J. Palis, “Vector fields generate few diffeomorphisms”, Bull. Amer. Math. Soc., 80 (1977), 503–505 | DOI | MR | Zbl

[3] J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR | Zbl

[4] M. I. Brin, “O vklyuchenii diffeomorfizma v potok”, Izv. vuzov. Matem., 1972, no. 8, 19–25 | MR | Zbl

[5] J. Palis, S. Smale, “Structural stability theorems”, Global analysis (Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI, 1970, 223–231 | MR | Zbl

[6] H. Debrunner, R. Fox, “A mildly wild imbedding of an $n$-frame”, Duke Math. J., 27:3 (1960), 425–429 | DOI | MR | Zbl

[7] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[8] C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[9] O. Pochinka, “Diffeomorphisms with mildly wild frame of separatrices”, Univ. Iagel. Acta Math., 2009, no. 47, 149–154 | MR | Zbl

[10] K. Kuperberg, “2-wild trajectories”, Discrete Contin. Dyn. Syst., 2005, suppl. vol., 518–523 | MR | Zbl

[11] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl

[12] C. Bonatti, V. Z. Grines, O. V. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds”, Proc. Steklov Inst. Math., 250 (2005), 1–46 | MR | Zbl

[13] O. V. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds”, Proc. Steklov Inst. Math., 84:2 (2011), 722–725 | DOI | MR | Zbl

[14] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Salvador, Brasil, 1971), Academic Press, New York, 1973, 389–419 | MR | Zbl

[15] A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 | DOI | MR | Zbl

[16] S. Ju. Piljugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Differential Equations, 14:2 (1978), 170–177 | MR | Zbl | Zbl

[17] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Peixoto graph of Morse–Smale diffeomorphisms on manifolds of dimension greater than three”, Proc. Steklov Inst. Math., 261 (2008), 59–83 | DOI | MR | Zbl

[18] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices”, Proc. Steklov Inst. Math., 270:1 (2010), 57–79 | DOI | MR | Zbl

[19] W. P. Thurston, Three-dimensional geometry and topology, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997 | MR | Zbl

[20] C. Kosniowski, A first course in algebraic topology, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | MR | Zbl | Zbl

[21] J. Dugundji, H. A. Antosiewicz, “Parallelizable flows and Lyapunov's second method”, Ann. of Math. (2), 73 (1961), 543–555 | DOI | MR | Zbl

[22] W. Hurewicz, H. Wallman, Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl

[23] G. S. Young, “On the factors and fiberings of manifolds”, Proc. Amer. Math. Soc., 1 (1950), 215–223 | DOI | MR | Zbl

[24] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | MR | Zbl

[25] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[26] D. Rolfsen, Knots and links, Amer. Math. Soc. Chelsea Publ., Providence, RI, 2003 | MR | Zbl