On embedding a Morse-Smale diffeomorphism on a~3-manifold in a~topological flow
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1761-1784
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, for the case of 3-dimensional manifolds, we solve the Palis problem on finding necessary and sufficient conditions for a Morse-Smale cascade to embed in a topological flow. The set of such cascades is open
in the space of all diffeomorphisms, while the set of arbitrary diffeomorphisms that embed in a smooth
flow is nowhere dense. Also, we consider a class of diffeomorphisms that embed in a topological flow and prove that a complete topological invariant for this class is similar to the Andronova-Maier scheme and the Peixoto graph.
Bibliography: 26 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Morse-Smale diffeomorphism, Morse-Smale cascade, embedding in a flow, dynamical systems on manifolds.
                    
                    
                    
                  
                
                
                @article{SM_2012_203_12_a4,
     author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev and O. V. Pochinka},
     title = {On embedding a {Morse-Smale} diffeomorphism on a~3-manifold in a~topological flow},
     journal = {Sbornik. Mathematics},
     pages = {1761--1784},
     publisher = {mathdoc},
     volume = {203},
     number = {12},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/}
}
                      
                      
                    TY - JOUR AU - V. Z. Grines AU - E. Ya. Gurevich AU - V. S. Medvedev AU - O. V. Pochinka TI - On embedding a Morse-Smale diffeomorphism on a~3-manifold in a~topological flow JO - Sbornik. Mathematics PY - 2012 SP - 1761 EP - 1784 VL - 203 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/ LA - en ID - SM_2012_203_12_a4 ER -
%0 Journal Article %A V. Z. Grines %A E. Ya. Gurevich %A V. S. Medvedev %A O. V. Pochinka %T On embedding a Morse-Smale diffeomorphism on a~3-manifold in a~topological flow %J Sbornik. Mathematics %D 2012 %P 1761-1784 %V 203 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/ %G en %F SM_2012_203_12_a4
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev; O. V. Pochinka. On embedding a Morse-Smale diffeomorphism on a~3-manifold in a~topological flow. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1761-1784. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a4/
