Uniform approximation of partial sums of a Dirichlet series by shorter sums and $\Phi$-widths
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1736-1760 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that each Dirichlet polynomial $P$ of degree $N$ which is bounded in a certain natural Euclidean norm, admits a nontrivial uniform approximation on the corresponding interval on the real axis by a Dirichlet polynomial with spectrum containing significantly fewer than $N$ elements. Moreover, this spectrum is independent of $P$. Bibliography: 19 titles.
Keywords: Dirichlet series, widths, $\varepsilon$-entropy.
@article{SM_2012_203_12_a3,
     author = {J. Bourgain and B. S. Kashin},
     title = {Uniform approximation of partial sums of {a~Dirichlet} series by shorter sums and $\Phi$-widths},
     journal = {Sbornik. Mathematics},
     pages = {1736--1760},
     year = {2012},
     volume = {203},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/}
}
TY  - JOUR
AU  - J. Bourgain
AU  - B. S. Kashin
TI  - Uniform approximation of partial sums of a Dirichlet series by shorter sums and $\Phi$-widths
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1736
EP  - 1760
VL  - 203
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/
LA  - en
ID  - SM_2012_203_12_a3
ER  - 
%0 Journal Article
%A J. Bourgain
%A B. S. Kashin
%T Uniform approximation of partial sums of a Dirichlet series by shorter sums and $\Phi$-widths
%J Sbornik. Mathematics
%D 2012
%P 1736-1760
%V 203
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/
%G en
%F SM_2012_203_12_a3
J. Bourgain; B. S. Kashin. Uniform approximation of partial sums of a Dirichlet series by shorter sums and $\Phi$-widths. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1736-1760. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/

[1] J. Bourgain, B. S. Kashin, “On the uniform approximation of the partial sum of the Dirichlet series by a shorter sum”, Math. Notes, 87:2 (2010), 285–286 | DOI | MR | Zbl

[2] R. S. Ismagilov, “Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials”, Russian Math. Surveys, 29:3 (1974), 169–186 | DOI | MR | Zbl

[3] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, de Gruyter, Berlin, 1992 | MR | MR | Zbl | Zbl

[4] E. Bombieri, J. B. Friedlander, “Dirichlet polynomial approximations to zeta functions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:3 (1995), 517–544 | MR | Zbl

[5] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl

[6] A. Yu. Garnaev, E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30:1 (1984), 200–204 | MR | Zbl

[7] M. Talagrand, “Selecting a proportion of characters”, Israel J. Math., 108:1 (1998), 173–191 | DOI | MR | Zbl

[8] O. Guédon, S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, “Subspaces and orthogonal decompositions generated by bounded orthogonal systems”, Positivity, 11:2 (2007), 269–283 | DOI | MR | Zbl

[9] J. Bourgain, A. Pajor, S. J. Szarek, N. Tomczak-Jaegermann, “On the duality problem for entropy numbers of operators”, Geometric aspects of functional analysis, Lecture Notes in Math., 1376, Springer-Verlag, Berlin, 50–63 | DOI | MR | Zbl

[10] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conf. Ser. in Math., 60, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl

[11] M. Rudelson, “Almost orthogonal submatrices of an orthogonal matrix”, Israel J. Math., 111:1 (1999), 143–155 | DOI | MR | Zbl

[12] V. V. Petrov, Sums of independent random variables, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | MR | Zbl | Zbl

[13] J.-P. Kahane, Some random series of functions, Cambridge Stud. Adv. Math., 5, Cambridge Univ. Press., Cambridge, 1985 | MR | Zbl

[14] M. Talagrand, The generic chaining, Springer Monogr. Math., Springer-Verlag, Berlin, 2005 | MR | Zbl

[15] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[16] B. Carl, “Inequalities of Bernstein–Jackson-type and the degree of compactness of operators in Banach spaces”, Ann. Inst. Fourier (Grenoble), 35:3 (1985), 79–118 | DOI | MR | Zbl

[17] P. Nevai, V. Totik, “Weighted polynomial inequalities”, Constr. Approx., 2:2 (1986), 113–127 | DOI | MR | Zbl

[18] P. L. Ul'yanov, “On classes of infinitely differentiable functions”, Math. USSR-Sb., 70:1 (1991), 11–30 | DOI | MR | Zbl

[19] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl