Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1736-1760
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that each Dirichlet polynomial $P$ of degree $N$ which is bounded in a certain natural Euclidean norm, admits a nontrivial uniform approximation on the corresponding interval on the real axis by a Dirichlet polynomial with spectrum containing significantly fewer than $N$ elements. Moreover, this spectrum is independent of $P$.
Bibliography: 19 titles.
Keywords:
Dirichlet series, widths, $\varepsilon$-entropy.
@article{SM_2012_203_12_a3,
author = {J. Bourgain and B. S. Kashin},
title = {Uniform approximation of partial sums of {a~Dirichlet} series by shorter sums and $\Phi$-widths},
journal = {Sbornik. Mathematics},
pages = {1736--1760},
publisher = {mathdoc},
volume = {203},
number = {12},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/}
}
TY - JOUR AU - J. Bourgain AU - B. S. Kashin TI - Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths JO - Sbornik. Mathematics PY - 2012 SP - 1736 EP - 1760 VL - 203 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/ LA - en ID - SM_2012_203_12_a3 ER -
J. Bourgain; B. S. Kashin. Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1736-1760. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/