Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1736-1760

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that each Dirichlet polynomial $P$ of degree $N$ which is bounded in a certain natural Euclidean norm, admits a nontrivial uniform approximation on the corresponding interval on the real axis by a Dirichlet polynomial with spectrum containing significantly fewer than $N$ elements. Moreover, this spectrum is independent of $P$. Bibliography: 19 titles.
Keywords: Dirichlet series, widths, $\varepsilon$-entropy.
@article{SM_2012_203_12_a3,
     author = {J. Bourgain and B. S. Kashin},
     title = {Uniform approximation of partial sums of {a~Dirichlet} series by shorter sums and $\Phi$-widths},
     journal = {Sbornik. Mathematics},
     pages = {1736--1760},
     publisher = {mathdoc},
     volume = {203},
     number = {12},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/}
}
TY  - JOUR
AU  - J. Bourgain
AU  - B. S. Kashin
TI  - Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1736
EP  - 1760
VL  - 203
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/
LA  - en
ID  - SM_2012_203_12_a3
ER  - 
%0 Journal Article
%A J. Bourgain
%A B. S. Kashin
%T Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths
%J Sbornik. Mathematics
%D 2012
%P 1736-1760
%V 203
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/
%G en
%F SM_2012_203_12_a3
J. Bourgain; B. S. Kashin. Uniform approximation of partial sums of a~Dirichlet series by shorter sums and $\Phi$-widths. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1736-1760. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a3/