Conformal mapping of rectangular heptagons
Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1715-1735 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new effective approach to calculating the direct and inverse conformal mapping of rectangular polygons onto a half-plane is put forward; it is based on the use of Riemann theta functions. Bibliography: 14 titles.
Keywords: Christoffel-Schwarz integral, Riemann surface, Siegel space, theta functions.
Mots-clés : Jacobian
@article{SM_2012_203_12_a2,
     author = {A. B. Bogatyrev},
     title = {Conformal mapping of rectangular heptagons},
     journal = {Sbornik. Mathematics},
     pages = {1715--1735},
     year = {2012},
     volume = {203},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_12_a2/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Conformal mapping of rectangular heptagons
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1715
EP  - 1735
VL  - 203
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_12_a2/
LA  - en
ID  - SM_2012_203_12_a2
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Conformal mapping of rectangular heptagons
%J Sbornik. Mathematics
%D 2012
%P 1715-1735
%V 203
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2012_203_12_a2/
%G en
%F SM_2012_203_12_a2
A. B. Bogatyrev. Conformal mapping of rectangular heptagons. Sbornik. Mathematics, Tome 203 (2012) no. 12, pp. 1715-1735. http://geodesic.mathdoc.fr/item/SM_2012_203_12_a2/

[1] T. A. Driscoll, L. N. Trefethen, Schwarz–Christoffel mapping, Cambridge Monogr. Appl. Comput. Math., 8, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[2] A. Bogatyrev, M. Hassner, D. Yarmolich, “An exact analytical-expression for the read sensor signal in magnetic data storage channels”, Error-correcting codes, finite geometries and cryptography (Toronto, ON, Canada, 2007), Contemp. Math., 523, Amer. Math. Soc., Providence, RI, 2010, 155–160 | MR | Zbl

[3] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, M. Schmies, “Computing Riemann theta functions”, Math. Comp., 73:247 (2004), 1417–1442 | DOI | MR | Zbl

[4] H. M. Farkas, I. Kra, Riemann surfaces, Grad. Texts in Math., 71, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl

[5] S. M. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, Transl. Math. Monogr., 225, Amer. Math. Soc., Providence, RI, 2004 | MR | MR | Zbl | Zbl

[6] A. Lebowitz, “Handle removal on a compact Riemann surface of genus 2”, Israel J. Math., 15:2 (1973), 189–192 | DOI | MR | Zbl

[7] A. Lebowitz, “Degeneration of a compact Riemann surface of genus 2”, Israel J. Math., 12:3 (1972), 223–236 | DOI | MR | Zbl

[8] G. Rosenhain, “Abhandlung über die Funktionen zweier Variabeln mit Vier perioden”, Mem. pres. l'Acad. de Sci. de France des savants XI, 1851

[9] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl

[10] A. B. Bogatyrev, “Effective approach to least deviation problems”, Sb. Math., 193:12 (2002), 1749–1769 | DOI | MR | Zbl

[11] H. E. Rauch, H. M. Farkas, Theta functions with applications to Riemann surfaces, Williams Wilkins, Baltimore, 1974 | MR | Zbl

[12] D. Mamford, Lektsii o teta-funktsii, Mir, M., 1988 ; D. Mumford, Tata lectures on theta. I, Progr. Math., 28, Birkhaüser, Boston, MA, 1983 ; II, Progr. Math., 43, Birkhaüser, Boston, MA, 1984 | MR | MR | Zbl | MR | Zbl

[13] D. Grant, “Formal groups in genus two”, J. Reine Angew. Math., 411 (1990) | DOI | MR | Zbl

[14] J. Jorgenson, “On directional derivatives of the theta function along its divisor”, Israel J. Math., 77:3 (1992), 273–284 | DOI | MR | Zbl