Classification of knotted tori in 2-metastable dimension
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the classical Knotting Problem: for a given manifold $N$ and number $m$ describe the set of isotopy classes of embeddings $N\to S^m$. We study the specific case of knotted tori, that is, the embeddings $S^p\times S^q\to S^m$. The classification of knotted tori up to isotopy in the metastable
dimension range $m\geqslant p+\frac32q+2$, $p\leqslant q$, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension:
\medskip
Theorem
Assume that $p+\frac43q+2$ and $m>2p+q+2$. Then the set of isotopy classes of smooth embeddings $S^p\times S^q\to S^m$ is infinite if and only if either $q+1$ or $p+q+1$ is divisible by $4$. Bibliography: 35 titles.
Keywords:
knotted torus, link, link map, embedding, surgery.
@article{SM_2012_203_11_a7,
author = {D. Repov\v{s} and M. B. Skopenkov and M. Cencelj},
title = {Classification of knotted tori in 2-metastable dimension},
journal = {Sbornik. Mathematics},
pages = {1654--1681},
publisher = {mathdoc},
volume = {203},
number = {11},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/}
}
TY - JOUR AU - D. Repovš AU - M. B. Skopenkov AU - M. Cencelj TI - Classification of knotted tori in 2-metastable dimension JO - Sbornik. Mathematics PY - 2012 SP - 1654 EP - 1681 VL - 203 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/ LA - en ID - SM_2012_203_11_a7 ER -
D. Repovš; M. B. Skopenkov; M. Cencelj. Classification of knotted tori in 2-metastable dimension. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/