@article{SM_2012_203_11_a7,
author = {D. Repov\v{s} and M. B. Skopenkov and M. Cencelj},
title = {Classification of knotted tori in 2-metastable dimension},
journal = {Sbornik. Mathematics},
pages = {1654--1681},
year = {2012},
volume = {203},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/}
}
D. Repovš; M. B. Skopenkov; M. Cencelj. Classification of knotted tori in 2-metastable dimension. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/
[1] D. Repovs, A. B. Skopenkov, “New results on embeddings of polyhedra and manifolds in Euclidean spaces”, Russian Math. Surveys, 54:6 (1999), 1149–1196 | DOI | MR | Zbl
[2] A. B. Skopenkov, “Embedding and knotting of manifolds in Euclidean spaces”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2007, 248–342 | MR | Zbl
[3] A. Haefliger, “Differentiable links”, Topology, 1 (1962), 241–244 | DOI | MR | Zbl
[4] A. Haefliger, “Differentiable embeddings of $S^n$ in $S^{n+q}$ for $q>2$”, Ann. of Math. (2), 83:3 (1966), 402–436 | DOI | MR | Zbl
[5] A. Haefliger, “Enlacements de sphères en codimension supérieure à 2”, Comment. Math. Helv., 41 (1966–1967), 51–72 | DOI | MR | Zbl
[6] J. F. P. Hudson, “Knotted tori”, Topology, 2 (1963), 11–22 | DOI | MR | Zbl
[7] M. Cencelj, D. Repovš, “On embeddings of tori in Euclidean spaces”, Acta Math. Sin. (Engl. Ser.), 21:2 (2005), 435–438 | DOI | MR | Zbl
[8] M. Cencelj, D. Repovs, A. B. Skopenkov, “On the Browder–Levine–Novikov embedding theorems”, Proc. Steklov Inst. Math., 247 (2004), 259–268 | MR | Zbl
[9] D. Crowley, A. Skopenkov, “A classification of smooth embeddings of four-manifolds in seven-space. II”, Int. J. Math., 22:6 (2011), 731–757 | DOI | MR | Zbl
[10] M. Skopenkov, “Suspension theorems for links and link maps”, Proc. Amer. Math. Soc., 137:1 (2009), 359–369 | DOI | MR | Zbl
[11] M. Cencelj, D. Repovš, M. B. Skopenkov, “Homotopy type of the complement of an immersion and classification of embeddings of tori”, Russian Math. Surveys, 62:5 (2007), 985–987 | DOI | MR | Zbl
[12] M. Cencelj, D. Repovš, M. B. Skopenkov, A new invariant of higher-dimensional embeddings, Preprint, 2008; arXiv: 0811.2745v1
[13] J. Levine, “A classification of differentiable knots”, Ann. of Math. (2), 82 (1965), 15–50 | DOI | MR | Zbl
[14] A. Skopenkov, “A new invariant and parametric connected sum of embeddings”, Fund. Math., 197 (2007), 253–269 | DOI | MR | Zbl
[15] C. Weber, “Plongements de polyèdres dans le domain métastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl
[16] R. J. Milgram, E. Rees, “On the normal bundle to an embedding”, Topology, 10 (1971), 299–308 | DOI | MR | Zbl
[17] A. Skopenkov, “On the Haefliger–Hirsch–Wu invariants for embeddings and immersions”, Comment. Math. Helv., 77:1 (2002), 78–124 | DOI | MR | Zbl
[18] W. Browder, “Embedding smooth manifolds”, Proc. Int. Congr. Math. (Moscow, 1966), Mir, Moscow, 1968, 712–719 | MR | Zbl
[19] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1970 | MR | Zbl
[20] T. G. Goodwillie, M. Weiss, “Embeddings from the point of view of immersion theory, II”, Geom. Topol., 3 (1999), 103–118 | DOI | MR | Zbl
[21] A. Skopenkov, Classification of embeddings below the metastable dimension, arXiv: math/0607422
[22] A. Skopenkov, “A classification of smooth embeddings of 3-manifolds in 6-space”, Math. Z., 260:3 (2008), 647–672 | DOI | MR | Zbl
[23] M. Skopenkov, When the set of embeddings is finite?, arXiv: 1106.1878
[24] D. Crowley, S. Ferry and M. Skopenkov, “The rational classification of links of codimension $>2$”, Forum. Math. (to appear)
[25] J. F. P. Hudson, Piecewise linear topology, Benjamin, New York–Amsterdam, 1969 | MR | Zbl
[26] U. Koschorke, B. Sanderson, “Geometric interpretations of the generalized Hopf invariant”, Math. Scand., 41:2 (1977), 199–217 | MR | Zbl
[27] U. Koschorke, “Multiple point invariants of link maps”, Differential topology (Siegen, 1987), Lecture Notes in Math., 1350, Springer-Verlag, Berlin, 1988, 44–86 | DOI | MR | Zbl
[28] G. F. Paechter, “The groups $\pi_r(V_{m,n})$”, I, Quart. J. Math. Oxford Ser. (2), 7 (1956), 249–268 ; II, 9 (1958), 8–27 ; III, 10 (1959), 17–37 ; IV, 10 (1959), 241–260 ; V, 11 (1960), 1–16 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI
[29] U. Koschorke, “On link maps and their homotopy classification”, Math. Ann., 286:4 (1990), 753–782 | DOI | MR | Zbl
[30] N. Habegger, U. Kaiser, “Link homotopy in the 2-metastable range”, Topology, 37:1 (1998), 75–94 | DOI | MR | Zbl
[31] U. Koschorke, “Link maps and the geometry of their invariants”, Manuscripta Math., 61:4 (1988), 383–415 | DOI | MR | Zbl
[32] P. A. Kirk, “Link homotopy with one codimension two component”, Trans. Amer. Math. Soc., 319:2 (1990), 663–688 | DOI | MR | Zbl
[33] A. Haefliger, “Lissage des immersions. I”, Topology, 6 (1967), 221–240 | DOI | MR | Zbl
[34] V. M. Nezhinskiǐ, “A suspension sequence in the theory of links”, Math. USSR-Izv., 24:1 (1985), 121–150 | DOI | MR | Zbl | Zbl
[35] A. Hatcher, F. Quinn, “Bordism invariants of intersections of submanifolds”, Trans. Amer. Math. Soc., 200 (1974), 327–344 | DOI | MR | Zbl