Classification of knotted tori in 2-metastable dimension
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the classical Knotting Problem: for a given manifold $N$ and number $m$ describe the set of isotopy classes of embeddings $N\to S^m$. We study the specific case of knotted tori, that is, the embeddings $S^p\times S^q\to S^m$. The classification of knotted tori up to isotopy in the metastable dimension range $m\geqslant p+\frac32q+2$, $p\leqslant q$, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: \medskip Theorem Assume that $p+\frac43q+2 and $m>2p+q+2$. Then the set of isotopy classes of smooth embeddings $S^p\times S^q\to S^m$ is infinite if and only if either $q+1$ or $p+q+1$ is divisible by $4$. Bibliography: 35 titles.
Keywords: knotted torus, link, link map, embedding, surgery.
@article{SM_2012_203_11_a7,
     author = {D. Repov\v{s} and M. B. Skopenkov and M. Cencelj},
     title = {Classification of knotted tori in 2-metastable dimension},
     journal = {Sbornik. Mathematics},
     pages = {1654--1681},
     year = {2012},
     volume = {203},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/}
}
TY  - JOUR
AU  - D. Repovš
AU  - M. B. Skopenkov
AU  - M. Cencelj
TI  - Classification of knotted tori in 2-metastable dimension
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1654
EP  - 1681
VL  - 203
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/
LA  - en
ID  - SM_2012_203_11_a7
ER  - 
%0 Journal Article
%A D. Repovš
%A M. B. Skopenkov
%A M. Cencelj
%T Classification of knotted tori in 2-metastable dimension
%J Sbornik. Mathematics
%D 2012
%P 1654-1681
%V 203
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/
%G en
%F SM_2012_203_11_a7
D. Repovš; M. B. Skopenkov; M. Cencelj. Classification of knotted tori in 2-metastable dimension. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/

[1] D. Repovs, A. B. Skopenkov, “New results on embeddings of polyhedra and manifolds in Euclidean spaces”, Russian Math. Surveys, 54:6 (1999), 1149–1196 | DOI | MR | Zbl

[2] A. B. Skopenkov, “Embedding and knotting of manifolds in Euclidean spaces”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2007, 248–342 | MR | Zbl

[3] A. Haefliger, “Differentiable links”, Topology, 1 (1962), 241–244 | DOI | MR | Zbl

[4] A. Haefliger, “Differentiable embeddings of $S^n$ in $S^{n+q}$ for $q>2$”, Ann. of Math. (2), 83:3 (1966), 402–436 | DOI | MR | Zbl

[5] A. Haefliger, “Enlacements de sphères en codimension supérieure à 2”, Comment. Math. Helv., 41 (1966–1967), 51–72 | DOI | MR | Zbl

[6] J. F. P. Hudson, “Knotted tori”, Topology, 2 (1963), 11–22 | DOI | MR | Zbl

[7] M. Cencelj, D. Repovš, “On embeddings of tori in Euclidean spaces”, Acta Math. Sin. (Engl. Ser.), 21:2 (2005), 435–438 | DOI | MR | Zbl

[8] M. Cencelj, D. Repovs, A. B. Skopenkov, “On the Browder–Levine–Novikov embedding theorems”, Proc. Steklov Inst. Math., 247 (2004), 259–268 | MR | Zbl

[9] D. Crowley, A. Skopenkov, “A classification of smooth embeddings of four-manifolds in seven-space. II”, Int. J. Math., 22:6 (2011), 731–757 | DOI | MR | Zbl

[10] M. Skopenkov, “Suspension theorems for links and link maps”, Proc. Amer. Math. Soc., 137:1 (2009), 359–369 | DOI | MR | Zbl

[11] M. Cencelj, D. Repovš, M. B. Skopenkov, “Homotopy type of the complement of an immersion and classification of embeddings of tori”, Russian Math. Surveys, 62:5 (2007), 985–987 | DOI | MR | Zbl

[12] M. Cencelj, D. Repovš, M. B. Skopenkov, A new invariant of higher-dimensional embeddings, Preprint, 2008; arXiv: 0811.2745v1

[13] J. Levine, “A classification of differentiable knots”, Ann. of Math. (2), 82 (1965), 15–50 | DOI | MR | Zbl

[14] A. Skopenkov, “A new invariant and parametric connected sum of embeddings”, Fund. Math., 197 (2007), 253–269 | DOI | MR | Zbl

[15] C. Weber, “Plongements de polyèdres dans le domain métastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl

[16] R. J. Milgram, E. Rees, “On the normal bundle to an embedding”, Topology, 10 (1971), 299–308 | DOI | MR | Zbl

[17] A. Skopenkov, “On the Haefliger–Hirsch–Wu invariants for embeddings and immersions”, Comment. Math. Helv., 77:1 (2002), 78–124 | DOI | MR | Zbl

[18] W. Browder, “Embedding smooth manifolds”, Proc. Int. Congr. Math. (Moscow, 1966), Mir, Moscow, 1968, 712–719 | MR | Zbl

[19] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1970 | MR | Zbl

[20] T. G. Goodwillie, M. Weiss, “Embeddings from the point of view of immersion theory, II”, Geom. Topol., 3 (1999), 103–118 | DOI | MR | Zbl

[21] A. Skopenkov, Classification of embeddings below the metastable dimension, arXiv: math/0607422

[22] A. Skopenkov, “A classification of smooth embeddings of 3-manifolds in 6-space”, Math. Z., 260:3 (2008), 647–672 | DOI | MR | Zbl

[23] M. Skopenkov, When the set of embeddings is finite?, arXiv: 1106.1878

[24] D. Crowley, S. Ferry and M. Skopenkov, “The rational classification of links of codimension $>2$”, Forum. Math. (to appear)

[25] J. F. P. Hudson, Piecewise linear topology, Benjamin, New York–Amsterdam, 1969 | MR | Zbl

[26] U. Koschorke, B. Sanderson, “Geometric interpretations of the generalized Hopf invariant”, Math. Scand., 41:2 (1977), 199–217 | MR | Zbl

[27] U. Koschorke, “Multiple point invariants of link maps”, Differential topology (Siegen, 1987), Lecture Notes in Math., 1350, Springer-Verlag, Berlin, 1988, 44–86 | DOI | MR | Zbl

[28] G. F. Paechter, “The groups $\pi_r(V_{m,n})$”, I, Quart. J. Math. Oxford Ser. (2), 7 (1956), 249–268 ; II, 9 (1958), 8–27 ; III, 10 (1959), 17–37 ; IV, 10 (1959), 241–260 ; V, 11 (1960), 1–16 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI

[29] U. Koschorke, “On link maps and their homotopy classification”, Math. Ann., 286:4 (1990), 753–782 | DOI | MR | Zbl

[30] N. Habegger, U. Kaiser, “Link homotopy in the 2-metastable range”, Topology, 37:1 (1998), 75–94 | DOI | MR | Zbl

[31] U. Koschorke, “Link maps and the geometry of their invariants”, Manuscripta Math., 61:4 (1988), 383–415 | DOI | MR | Zbl

[32] P. A. Kirk, “Link homotopy with one codimension two component”, Trans. Amer. Math. Soc., 319:2 (1990), 663–688 | DOI | MR | Zbl

[33] A. Haefliger, “Lissage des immersions. I”, Topology, 6 (1967), 221–240 | DOI | MR | Zbl

[34] V. M. Nezhinskiǐ, “A suspension sequence in the theory of links”, Math. USSR-Izv., 24:1 (1985), 121–150 | DOI | MR | Zbl | Zbl

[35] A. Hatcher, F. Quinn, “Bordism invariants of intersections of submanifolds”, Trans. Amer. Math. Soc., 200 (1974), 327–344 | DOI | MR | Zbl