Classification of knotted tori in 2-metastable dimension
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the classical Knotting Problem: for a given manifold $N$ and number $m$ describe the set of isotopy classes of embeddings $N\to S^m$. We study the specific case of knotted tori, that is, the embeddings $S^p\times S^q\to S^m$. The classification of knotted tori up to isotopy in the metastable dimension range $m\geqslant p+\frac32q+2$, $p\leqslant q$, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: \medskip Theorem Assume that $p+\frac43q+2$ and $m>2p+q+2$. Then the set of isotopy classes of smooth embeddings $S^p\times S^q\to S^m$ is infinite if and only if either $q+1$ or $p+q+1$ is divisible by $4$. Bibliography: 35 titles.
Keywords: knotted torus, link, link map, embedding, surgery.
@article{SM_2012_203_11_a7,
     author = {D. Repov\v{s} and M. B. Skopenkov and M. Cencelj},
     title = {Classification of knotted tori in 2-metastable dimension},
     journal = {Sbornik. Mathematics},
     pages = {1654--1681},
     publisher = {mathdoc},
     volume = {203},
     number = {11},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/}
}
TY  - JOUR
AU  - D. Repovš
AU  - M. B. Skopenkov
AU  - M. Cencelj
TI  - Classification of knotted tori in 2-metastable dimension
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1654
EP  - 1681
VL  - 203
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/
LA  - en
ID  - SM_2012_203_11_a7
ER  - 
%0 Journal Article
%A D. Repovš
%A M. B. Skopenkov
%A M. Cencelj
%T Classification of knotted tori in 2-metastable dimension
%J Sbornik. Mathematics
%D 2012
%P 1654-1681
%V 203
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/
%G en
%F SM_2012_203_11_a7
D. Repovš; M. B. Skopenkov; M. Cencelj. Classification of knotted tori in 2-metastable dimension. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1654-1681. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a7/