On $L^2$-functions with bounded spectrum
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1647-1653
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the class $PW(\mathbb R^n)$ of functions in $L^2(\mathbb R^n)$, whose Fourier transform has
bounded support. We obtain a description of continuous maps $\varphi\colon \mathbb R^m\to \mathbb R^n$ such that $f\circ\varphi\in PW(\mathbb R^m)$ for every function $f\in PW(\mathbb R^n)$. Only injective affine maps $\varphi$ have this property.
Bibliography: 5 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
functions with bounded spectrum, superposition operators.
Mots-clés : Fourier transform
                    
                  
                
                
                Mots-clés : Fourier transform
@article{SM_2012_203_11_a6,
     author = {V. V. Lebedev},
     title = {On $L^2$-functions with bounded spectrum},
     journal = {Sbornik. Mathematics},
     pages = {1647--1653},
     publisher = {mathdoc},
     volume = {203},
     number = {11},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a6/}
}
                      
                      
                    V. V. Lebedev. On $L^2$-functions with bounded spectrum. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1647-1653. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a6/
