On $L^2$-functions with bounded spectrum
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1647-1653 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the class $PW(\mathbb R^n)$ of functions in $L^2(\mathbb R^n)$, whose Fourier transform has bounded support. We obtain a description of continuous maps $\varphi\colon \mathbb R^m\to \mathbb R^n$ such that $f\circ\varphi\in PW(\mathbb R^m)$ for every function $f\in PW(\mathbb R^n)$. Only injective affine maps $\varphi$ have this property. Bibliography: 5 titles.
Keywords: functions with bounded spectrum, superposition operators.
Mots-clés : Fourier transform
@article{SM_2012_203_11_a6,
     author = {V. V. Lebedev},
     title = {On $L^2$-functions with bounded spectrum},
     journal = {Sbornik. Mathematics},
     pages = {1647--1653},
     year = {2012},
     volume = {203},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a6/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - On $L^2$-functions with bounded spectrum
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1647
EP  - 1653
VL  - 203
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a6/
LA  - en
ID  - SM_2012_203_11_a6
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T On $L^2$-functions with bounded spectrum
%J Sbornik. Mathematics
%D 2012
%P 1647-1653
%V 203
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a6/
%G en
%F SM_2012_203_11_a6
V. V. Lebedev. On $L^2$-functions with bounded spectrum. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1647-1653. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a6/

[1] R. E. A. C. Paley, N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., New York, 1934 | MR | MR | Zbl | Zbl

[2] S. Azizi, D. Cochran, J. N. McDonald, “On the preservation of bandlimitedness under non-affine time warping”, Proc. Int. Workshop on Sampling Theory and Applications (Loen, Norway, 1999), The Norwegian Univ. of Science and Technology, 37–40

[3] S. Azizi, J. N. McDonald, D. Cochran, “Preservation of bandlimitedness under non-affine time warping for multi-dimensional functions”, Twentieth century harmonic analysis – a celebration (Il Ciocco, Italy, 2000), Kluwer Acad. Publ., Dordrecht, 2001, 369 | Zbl

[4] E. C. Titchmarsh, The theory of functions, Clarendon Press, Oxford, 1932 | MR | Zbl | Zbl

[5] A. I. Markushevich, The theory of analytic functions, Hindustan Publ., Delhi, 1963 | MR | MR | Zbl