Universality of composite functions of periodic zeta functions
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1631-1646

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions $F(\zeta(s;\mathfrak a))$, where the function $\zeta(s;\mathfrak a)$ is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form $F(\zeta(s;\mathfrak a_1),\dots,\zeta(s;\mathfrak a_r))$. For example, it follows from general theorems that every linear combination of derivatives of the function $\zeta(s;\mathfrak a)$ and every linear combination of the functions $\zeta(s;\mathfrak a_1),\dots,\zeta(s;\mathfrak a_r)$ are universal. Bibliography: 18 titles.
Keywords: support of a measure, periodic zeta function, limit theorem, the space of analytic functions, universality.
@article{SM_2012_203_11_a5,
     author = {A. Laurin\v{c}ikas},
     title = {Universality of composite functions of periodic zeta functions},
     journal = {Sbornik. Mathematics},
     pages = {1631--1646},
     publisher = {mathdoc},
     volume = {203},
     number = {11},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a5/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - Universality of composite functions of periodic zeta functions
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1631
EP  - 1646
VL  - 203
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a5/
LA  - en
ID  - SM_2012_203_11_a5
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T Universality of composite functions of periodic zeta functions
%J Sbornik. Mathematics
%D 2012
%P 1631-1646
%V 203
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a5/
%G en
%F SM_2012_203_11_a5
A. Laurinčikas. Universality of composite functions of periodic zeta functions. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1631-1646. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a5/