@article{SM_2012_203_11_a4,
author = {V. G. Zvyagin and S. K. Kondrat'ev},
title = {Attractors of weak solutions to the regularized system of equations of motion of fluid media with memory},
journal = {Sbornik. Mathematics},
pages = {1611--1630},
year = {2012},
volume = {203},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a4/}
}
TY - JOUR AU - V. G. Zvyagin AU - S. K. Kondrat'ev TI - Attractors of weak solutions to the regularized system of equations of motion of fluid media with memory JO - Sbornik. Mathematics PY - 2012 SP - 1611 EP - 1630 VL - 203 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a4/ LA - en ID - SM_2012_203_11_a4 ER -
%0 Journal Article %A V. G. Zvyagin %A S. K. Kondrat'ev %T Attractors of weak solutions to the regularized system of equations of motion of fluid media with memory %J Sbornik. Mathematics %D 2012 %P 1611-1630 %V 203 %N 11 %U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a4/ %G en %F SM_2012_203_11_a4
V. G. Zvyagin; S. K. Kondrat'ev. Attractors of weak solutions to the regularized system of equations of motion of fluid media with memory. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1611-1630. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a4/
[1] V. T. Dmitrienko, V. G. Zvyagin, “Konstruktsii operatora regulyarizatsii v modelyakh dvizheniya vyazkouprugikh sred”, Vestn. VoronezhGU. Ser. 1. Matem., fiz., 2 (2004), 148–153 | Zbl
[2] V. G. Litvinov, “Regular model and nonstationary problem for the nonlinear viscoelastic fluid”, Siberian J. Differential Equations, 1:4 (1997), 351–382 | MR
[3] R. Temam, Navier–Stokes equations, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[4] V. G. Zvyagin, V. T. Dmitrienko, “On weak solutions of an initial-boundary value problem for the equation of motion of a viscoelastic fluid”, Dokl. Math., 64:2 (2001), 190–193 | MR | Zbl
[5] V. G. Zvyagin, V. T. Dmitrienko, “On weak solutions of a regularized model of a viscoelastic fluid”, Differ. Equ., 38:12 (2002), 1731–1744 | DOI | MR | Zbl
[6] V. G. Zvyagin, D. A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, De Gruyter Ser. Nonlinear Anal. Appl., 12, de Gruyter, Berlin, 2008 | MR | Zbl
[7] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | DOI | MR | Zbl
[8] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl
[9] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[10] G. R. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl
[11] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002 | MR | Zbl
[12] M. I. Vishik, V. V. Chepyzhov, “Trajectory and global attractors of three-dimensional Navier–Stokes systems”, Math. Notes, 71:2 (2002), 177–193 | DOI | MR | Zbl
[13] D. A. Vorotnikov, V. G. Zvyagin, “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl
[14] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, Editorial URSS, M., 2004