The asymptotics of a~solution of a~parabolic equation as time increases without bound
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1589-1610
Voir la notice de l'article provenant de la source Math-Net.Ru
A boundary-value problem for a second order parabolic equation on a half-line is considered. A uniform asymptotic approximation to a solution to within any power of $t^{-1}$ is constructed and substantiated.
Bibliography: 8 titles.
Keywords:
asymptotic expansion, small parameter, boundary-value problem, method of matching.
@article{SM_2012_203_11_a3,
author = {D. O. Degtyarev and A. M. Il'in},
title = {The asymptotics of a~solution of a~parabolic equation as time increases without bound},
journal = {Sbornik. Mathematics},
pages = {1589--1610},
publisher = {mathdoc},
volume = {203},
number = {11},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a3/}
}
TY - JOUR AU - D. O. Degtyarev AU - A. M. Il'in TI - The asymptotics of a~solution of a~parabolic equation as time increases without bound JO - Sbornik. Mathematics PY - 2012 SP - 1589 EP - 1610 VL - 203 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a3/ LA - en ID - SM_2012_203_11_a3 ER -
D. O. Degtyarev; A. M. Il'in. The asymptotics of a~solution of a~parabolic equation as time increases without bound. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1589-1610. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a3/