The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1571-1588 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Minkowski sum $P_{\mathrm V}(E_7)+Z(U)$ of the Voronoi polytope $P_{\mathrm V}(E_7)$ of the root lattice $E_7$ and the zonotope $Z(U)$ is a 7-dimensional parallelohedron if and only if the set $U$ consists of minimal vectors of the dual lattice $E_7^*$ up to scalar multiplication, and $U$ does not contain forbidden sets. The minimal vectors of $E_7$ are the vectors $r$ of the classical root system $\mathbf E_7$. If the $r^2$-norm of the roots is set equal to 2, then the scalar products of minimal vectors from the dual lattice only take the values $\pm1/2$. A set of minimal vectors is referred to as forbidden if it consists of six vectors, and the directions of some of these vectors can be changed so as to obtain a set of six vectors with all the pairwise scalar products equal to $1/2$. Bibliography: 11 titles.
Keywords: Minkowski sum, Voronoi polytope, zonotope, unimodular set, matroid.
@article{SM_2012_203_11_a2,
     author = {V. P. Grishukhin},
     title = {The {Minkowski} sum of a~zonotope and the {Voronoi} polytope of the root lattice~$E_7$},
     journal = {Sbornik. Mathematics},
     pages = {1571--1588},
     year = {2012},
     volume = {203},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a2/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1571
EP  - 1588
VL  - 203
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a2/
LA  - en
ID  - SM_2012_203_11_a2
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$
%J Sbornik. Mathematics
%D 2012
%P 1571-1588
%V 203
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a2/
%G en
%F SM_2012_203_11_a2
V. P. Grishukhin. The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1571-1588. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a2/

[1] E. P. Baranovskii, “Partitioning of Euclidean spaces into $L$-polytopes of some perfect lattices”, Proc. Steklov Inst. Math., 196 (1992), 29–51 | MR | Zbl | Zbl

[2] J. H. Conway, N. J. A. Sloane, “The cell structures of certain lattices”, Miscellanea mathematica, Springer-Verlag, Berlin, 1991, 71–107 | MR | Zbl

[3] V. P. Grishukhin, “Koe-chto o reshetkakh $E_6$ i $E_6^*$”, Chebyshevskii sb., 7:2 (2006), 78–94 | MR | Zbl

[4] V. P. Grishukhin, “Parallelotopes of non-zero width”, Sb. Math., 195:5 (2004), 669–686 | DOI | MR | Zbl

[5] N. P. Dolbilin, “Properties of faces of parallelohedra”, Proc. Steklov Inst. Math., 266 (2009), 105–119 | DOI | MR | Zbl

[6] A. Björner, M. Las Vergnas, B. Stumfels, N. White, G. M. Ziegler, Oriented matroids, Encyclopedia Math. Appl., 46, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[7] M. Deza, V. Grishukhin, “Voronoi's conjecture and space tiling zonotopes”, Mathematika, 51:1–2 (2004), 1–10 | DOI | MR | Zbl

[8] P. D. Seymour, “Decomposition of regular matroids”, J. Combin. Theory Ser. B, 28:3 (1980), 305–359 | DOI | MR | Zbl

[9] M. Aigner, Combinatorial theory, Grundlehren Math. Wiss., 234, Springer-Verlag, Berlin–New York, 1979 | MR | MR | Zbl

[10] V. Danilov, V. Grishukhin, “Maximal unimodular systems of vectors”, European J. Combin., 20:6 (1999), 507–526 | DOI | MR | Zbl

[11] V. P. Grishukhin, V. I. Danilov, G. A. Koshevoi, “Unimodular systems of vectors are embeddable in the $(0,1)$-cube”, Math. Notes, 88:6 (2010), 891–893 | DOI | MR | Zbl