@article{SM_2012_203_11_a2,
author = {V. P. Grishukhin},
title = {The {Minkowski} sum of a~zonotope and the {Voronoi} polytope of the root lattice~$E_7$},
journal = {Sbornik. Mathematics},
pages = {1571--1588},
year = {2012},
volume = {203},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a2/}
}
V. P. Grishukhin. The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1571-1588. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a2/
[1] E. P. Baranovskii, “Partitioning of Euclidean spaces into $L$-polytopes of some perfect lattices”, Proc. Steklov Inst. Math., 196 (1992), 29–51 | MR | Zbl | Zbl
[2] J. H. Conway, N. J. A. Sloane, “The cell structures of certain lattices”, Miscellanea mathematica, Springer-Verlag, Berlin, 1991, 71–107 | MR | Zbl
[3] V. P. Grishukhin, “Koe-chto o reshetkakh $E_6$ i $E_6^*$”, Chebyshevskii sb., 7:2 (2006), 78–94 | MR | Zbl
[4] V. P. Grishukhin, “Parallelotopes of non-zero width”, Sb. Math., 195:5 (2004), 669–686 | DOI | MR | Zbl
[5] N. P. Dolbilin, “Properties of faces of parallelohedra”, Proc. Steklov Inst. Math., 266 (2009), 105–119 | DOI | MR | Zbl
[6] A. Björner, M. Las Vergnas, B. Stumfels, N. White, G. M. Ziegler, Oriented matroids, Encyclopedia Math. Appl., 46, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[7] M. Deza, V. Grishukhin, “Voronoi's conjecture and space tiling zonotopes”, Mathematika, 51:1–2 (2004), 1–10 | DOI | MR | Zbl
[8] P. D. Seymour, “Decomposition of regular matroids”, J. Combin. Theory Ser. B, 28:3 (1980), 305–359 | DOI | MR | Zbl
[9] M. Aigner, Combinatorial theory, Grundlehren Math. Wiss., 234, Springer-Verlag, Berlin–New York, 1979 | MR | MR | Zbl
[10] V. Danilov, V. Grishukhin, “Maximal unimodular systems of vectors”, European J. Combin., 20:6 (1999), 507–526 | DOI | MR | Zbl
[11] V. P. Grishukhin, V. I. Danilov, G. A. Koshevoi, “Unimodular systems of vectors are embeddable in the $(0,1)$-cube”, Math. Notes, 88:6 (2010), 891–893 | DOI | MR | Zbl