Mots-clés : simple partial fractions
@article{SM_2012_203_11_a1,
author = {P. A. Borodin},
title = {Approximation by simple partial fractions with constraints on the poles},
journal = {Sbornik. Mathematics},
pages = {1553--1570},
year = {2012},
volume = {203},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a1/}
}
P. A. Borodin. Approximation by simple partial fractions with constraints on the poles. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1553-1570. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a1/
[1] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Izd-vo Kazan. un-ta, Kazan, 1999, 74–79
[2] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | MR | Zbl
[3] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:2 (1964), 403–410 | DOI | MR | Zbl
[4] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl
[5] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | MR | Zbl
[6] N. Dunford, J. T. Schwartz, Linear operators. I. General theory, Wiley Classics Lib., Wiley, New York, 1988 | MR | MR | Zbl
[7] D. Hilbert, “Über die Entwicklung einer beliebigen analytischen Funktion einer Variabeln in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe”, Gött. Nachr., 1897, 63–70 | Zbl
[8] B. V. Shabat, Introduction à l'analyse complexe, Mir, Moscow, 1990 | MR | MR | MR | MR | Zbl | Zbl
[9] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl | Zbl
[10] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl
[11] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Univ. Press, New York, 1957 | MR | MR | Zbl | Zbl
[12] T. Dobrowolski, J. Grabowski, “Subgroups of Hilbert spaces”, Math. Z., 211:4 (1992), 657–669 | DOI | MR | Zbl
[13] R. Cauty, “Un exemple de sous-groupe additif de l'espace de Hilbert”, Colloq. Math., 77:1 (1998), 147–162 | MR | Zbl
[14] J. Grabowski, “Homotopically non-trivial additive subgroups of Hilbert spaces”, Proc. Amer. Math. Soc., 127:5 (1999), 1563–1565 | DOI | MR | Zbl
[15] V. M. Kadets, M. I. Kadets, Rearrangements of series in Banach spaces, Transl. Math. Monogr., 86, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[16] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | MR | Zbl
[17] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Chelsea Publ., Providence, RI, 1971 | MR | Zbl
[18] N. Bourbaki, Éléments de mathématiques. Fasc. III. Premiere partie. Livre III: Topologie générale. Chap. 3: Groupes topologiques (théorie élémentaire). Chap. 4: Nombres réels, Hermann Cie, Paris, 1960 | MR | MR | Zbl | Zbl
[19] A. N. Kolmogorov, “Zamechanie no povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR | Zbl