Approximation by simple partial fractions with constraints on the poles
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1553-1570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under various constraints on a compact subset $K$ of the complex plane $\mathbb C$ and a subset $E\subset \mathbb C$ disjoint from $K$, the problem of density in the space $AC(K)$ (the space of functions that are continuous on a compact set $K$ and analytic in its interior) of the set of simple partial fractions (logarithmic derivatives of polynomials) with poles in $E$ is studied. The present investigation also involves examining some properties of additive subgroups of a Hilbert space. Bibliography: 19 titles.
Keywords: uniform approximation, restriction on the poles, additive subgroup.
Mots-clés : simple partial fractions
@article{SM_2012_203_11_a1,
     author = {P. A. Borodin},
     title = {Approximation by simple partial fractions with constraints on the poles},
     journal = {Sbornik. Mathematics},
     pages = {1553--1570},
     year = {2012},
     volume = {203},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Approximation by simple partial fractions with constraints on the poles
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1553
EP  - 1570
VL  - 203
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a1/
LA  - en
ID  - SM_2012_203_11_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Approximation by simple partial fractions with constraints on the poles
%J Sbornik. Mathematics
%D 2012
%P 1553-1570
%V 203
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a1/
%G en
%F SM_2012_203_11_a1
P. A. Borodin. Approximation by simple partial fractions with constraints on the poles. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1553-1570. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a1/

[1] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Izd-vo Kazan. un-ta, Kazan, 1999, 74–79

[2] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | MR | Zbl

[3] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:2 (1964), 403–410 | DOI | MR | Zbl

[4] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[5] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | MR | Zbl

[6] N. Dunford, J. T. Schwartz, Linear operators. I. General theory, Wiley Classics Lib., Wiley, New York, 1988 | MR | MR | Zbl

[7] D. Hilbert, “Über die Entwicklung einer beliebigen analytischen Funktion einer Variabeln in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe”, Gött. Nachr., 1897, 63–70 | Zbl

[8] B. V. Shabat, Introduction à l'analyse complexe, Mir, Moscow, 1990 | MR | MR | MR | MR | Zbl | Zbl

[9] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl | Zbl

[10] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[11] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Univ. Press, New York, 1957 | MR | MR | Zbl | Zbl

[12] T. Dobrowolski, J. Grabowski, “Subgroups of Hilbert spaces”, Math. Z., 211:4 (1992), 657–669 | DOI | MR | Zbl

[13] R. Cauty, “Un exemple de sous-groupe additif de l'espace de Hilbert”, Colloq. Math., 77:1 (1998), 147–162 | MR | Zbl

[14] J. Grabowski, “Homotopically non-trivial additive subgroups of Hilbert spaces”, Proc. Amer. Math. Soc., 127:5 (1999), 1563–1565 | DOI | MR | Zbl

[15] V. M. Kadets, M. I. Kadets, Rearrangements of series in Banach spaces, Transl. Math. Monogr., 86, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[16] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | MR | Zbl

[17] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Chelsea Publ., Providence, RI, 1971 | MR | Zbl

[18] N. Bourbaki, Éléments de mathématiques. Fasc. III. Premiere partie. Livre III: Topologie générale. Chap. 3: Groupes topologiques (théorie élémentaire). Chap. 4: Nombres réels, Hermann Cie, Paris, 1960 | MR | MR | Zbl | Zbl

[19] A. N. Kolmogorov, “Zamechanie no povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR | Zbl