Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1535-1552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an affine spherical homogeneous space $G/H$ of a connected semisimple algebraic group $G$, we consider the factorization morphism by the action on $G/H$ of a maximal unipotent subgroup of $G$. We prove that this morphism is equidimensional if and only if the weight semigroup of $G/H$ satisfies a simple condition. Bibliography: 16 titles.
Keywords: homogeneous space, spherical subgroup, semigroup.
Mots-clés : algebraic group, equidimensional morphism
@article{SM_2012_203_11_a0,
     author = {R. S. Avdeev},
     title = {Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup},
     journal = {Sbornik. Mathematics},
     pages = {1535--1552},
     year = {2012},
     volume = {203},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/}
}
TY  - JOUR
AU  - R. S. Avdeev
TI  - Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1535
EP  - 1552
VL  - 203
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/
LA  - en
ID  - SM_2012_203_11_a0
ER  - 
%0 Journal Article
%A R. S. Avdeev
%T Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup
%J Sbornik. Mathematics
%D 2012
%P 1535-1552
%V 203
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/
%G en
%F SM_2012_203_11_a0
R. S. Avdeev. Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1535-1552. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/

[1] D. Hadžiev, “Some questions in the theory of vector invariants”, Math. USSR-Sb., 1:3 (1967), 383–396 | DOI | MR | Zbl | Zbl

[2] F. Knop, “Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins”, Math. Z., 213:1 (1993), 33–36 | DOI | MR | Zbl

[3] È. B. Vinberg, B. N. Kimel'fel'd, “Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups”, Funct. Anal. Appl., 12:3 (1978), 168–174 | DOI | MR | Zbl

[4] V. L. Popov, “Contraction of the actions of reductive algebraic groups”, Math. USSR-Sb., 58:2 (1987), 311–335 | DOI | MR | Zbl | Zbl

[5] R. S. Avdeev, “Excellent affine spherical homogeneous spaces of semisimple algebraic groups”, Trans. Mosc. Math. Soc., 2010, 209–240 | DOI | MR | Zbl

[6] D. I. Panyushev, “Parabolic subgroups with Abelian unipotent radical as a testing site for invariant theory”, Canad. J. Math., 51:3 (1999), 616–635 | DOI | MR | Zbl

[7] E. B. Vinberg, “Commutative homogeneous spaces and co-isotropic symplectic actions”, Russian Math. Surveys, 56:1 (2001), 1–60 | DOI | MR | Zbl

[8] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl

[9] I. V. Mikityuk, “On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces”, Math. USSR-Sb., 57:2 (1987), 527–546 | DOI | MR | Zbl | Zbl

[10] M. Brion, “Classification des espaces homogènes sphériques”, Compositio Math., 63:2 (1987), 189–208 | MR | Zbl

[11] O. S. Yakimova, “Weakly symmetric spaces of semisimple Lie groups”, Moscow Univ. Math. Bull., 57:2 (2002), 37–40 | MR | Zbl

[12] R. S. Avdeev, “Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups”, Izv. Math., 74:6 (2010), 1103–1126 | DOI | MR | Zbl

[13] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry. IV: Linear algebraic groups, invariant theory, Encycl. Math. Sci., 55, 1994, 123–278 | MR | Zbl | Zbl

[14] R. S. Avdeev, N. E. Gorfinkel, “Harmonic analysis on spherical homogeneous spaces with solvable stabilizer”, Funct. Anal. Appl., 46:3 (2012), 161–172 | DOI

[15] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[16] D. Panyushev, “Complexity of quasiaffine homogeneous varieties, $t$-decompositions, and affine homogeneous spaces of complexity 1”, Lie groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992, 151–166 | MR | Zbl