Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1535-1552
Voir la notice de l'article provenant de la source Math-Net.Ru
For an affine spherical homogeneous space $G/H$ of a connected semisimple algebraic group $G$, we consider the factorization morphism by the action on $G/H$ of a maximal unipotent subgroup of $G$. We prove that this morphism is equidimensional if and only if the weight semigroup of $G/H$ satisfies a simple condition.
Bibliography: 16 titles.
Keywords:
homogeneous space, spherical subgroup, semigroup.
Mots-clés : algebraic group, equidimensional morphism
Mots-clés : algebraic group, equidimensional morphism
@article{SM_2012_203_11_a0,
author = {R. S. Avdeev},
title = {Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup},
journal = {Sbornik. Mathematics},
pages = {1535--1552},
publisher = {mathdoc},
volume = {203},
number = {11},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/}
}
R. S. Avdeev. Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1535-1552. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/