Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup
Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1535-1552

Voir la notice de l'article provenant de la source Math-Net.Ru

For an affine spherical homogeneous space $G/H$ of a connected semisimple algebraic group $G$, we consider the factorization morphism by the action on $G/H$ of a maximal unipotent subgroup of $G$. We prove that this morphism is equidimensional if and only if the weight semigroup of $G/H$ satisfies a simple condition. Bibliography: 16 titles.
Keywords: homogeneous space, spherical subgroup, semigroup.
Mots-clés : algebraic group, equidimensional morphism
@article{SM_2012_203_11_a0,
     author = {R. S. Avdeev},
     title = {Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup},
     journal = {Sbornik. Mathematics},
     pages = {1535--1552},
     publisher = {mathdoc},
     volume = {203},
     number = {11},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/}
}
TY  - JOUR
AU  - R. S. Avdeev
TI  - Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1535
EP  - 1552
VL  - 203
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/
LA  - en
ID  - SM_2012_203_11_a0
ER  - 
%0 Journal Article
%A R. S. Avdeev
%T Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup
%J Sbornik. Mathematics
%D 2012
%P 1535-1552
%V 203
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/
%G en
%F SM_2012_203_11_a0
R. S. Avdeev. Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup. Sbornik. Mathematics, Tome 203 (2012) no. 11, pp. 1535-1552. http://geodesic.mathdoc.fr/item/SM_2012_203_11_a0/