@article{SM_2012_203_10_a4,
author = {K. I. Oblakov and T. A. Oblakova},
title = {Embeddings of graphs into {Euclidean} space under which the number of points that belong to a~hyperplane is minimal},
journal = {Sbornik. Mathematics},
pages = {1518--1533},
year = {2012},
volume = {203},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a4/}
}
TY - JOUR AU - K. I. Oblakov AU - T. A. Oblakova TI - Embeddings of graphs into Euclidean space under which the number of points that belong to a hyperplane is minimal JO - Sbornik. Mathematics PY - 2012 SP - 1518 EP - 1533 VL - 203 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a4/ LA - en ID - SM_2012_203_10_a4 ER -
%0 Journal Article %A K. I. Oblakov %A T. A. Oblakova %T Embeddings of graphs into Euclidean space under which the number of points that belong to a hyperplane is minimal %J Sbornik. Mathematics %D 2012 %P 1518-1533 %V 203 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2012_203_10_a4/ %G en %F SM_2012_203_10_a4
K. I. Oblakov; T. A. Oblakova. Embeddings of graphs into Euclidean space under which the number of points that belong to a hyperplane is minimal. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1518-1533. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a4/
[1] T. A. Antonova, K. I. Oblakov, “Special embeddings of graphs into a three-dimensional space”, Moscow Univ. Math. Bull., 63:6 (2008), 245–250 | DOI | MR
[2] T. A. Oblakova, K. I. Oblakov, “Special embeddings of some disconnected graphs into Euclidean space”, Moscow Univ. Math. Bull., 66:2 (2011), 90–92 | DOI | MR
[3] K. Borsuk, “On the $k$-independent subsets of the Euclidean space and of the Hilbert space”, Bull. Acad. Polon. Sci. Cl. III, 5:4 (1957), 351–356 | MR | Zbl
[4] V. G. Boltyanskij, S. S. Ryshkov, Yu. A. Shashkin, “On $k$-regular imbeddings and their application to the theory of approximation of functions”, Amer. Math. Soc. Transl. (2), 28 (1963), 211–219 | MR | MR | Zbl | Zbl
[5] S. A. Bogatyǐ, “Borsuk's conjecture, Ryshkov obstruction, interpolation, Chebyshev approximation, transversal Tverberg's theorem, and problems”, Proc. Steklov Inst. Math., 239 (2002), 55–73 | MR | Zbl | Zbl
[6] S. A. Bogatyi, V. M. Valov, “Roberts-type embeddings and conversion of transversal Tverberg's theorem”, Sb. Math., 196:11 (2005), 1585–1603 | DOI | MR | Zbl
[7] J. C. Mairhuber, “On Haar's theorem concerning Chebychev approximation problems having unique solutions”, Proc. Amer. Math. Soc., 7:4 (1956), 609–615 | DOI | MR | Zbl
[8] A. Brøndsted, An introduction to convex polytopes, Grad. Texts in Math., 90, Springer-Verlag, New York–Berlin, 1983 | MR | MR | Zbl | Zbl
[9] R. P. Dilworth, “A decomposition theorem for partially ordered sets”, Ann. of Math. (2), 51:1 (1960), 161–166 | DOI | MR | Zbl