Mots-clés : white noise perturbation
@article{SM_2012_203_10_a3,
author = {Yu. Yu. Klevtsova},
title = {Well-posedness of the {Cauchy} problem for the stochastic system for the {Lorenz} model for a~baroclinic atmosphere},
journal = {Sbornik. Mathematics},
pages = {1490--1517},
year = {2012},
volume = {203},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/}
}
TY - JOUR AU - Yu. Yu. Klevtsova TI - Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere JO - Sbornik. Mathematics PY - 2012 SP - 1490 EP - 1517 VL - 203 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/ LA - en ID - SM_2012_203_10_a3 ER -
Yu. Yu. Klevtsova. Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1490-1517. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/
[1] V. N. Krupchatnikov, “Global attractors for the Lorentz model on the sphere”, Bull. Novosib. Comput. Cent., Ser. Numer. Model. Atmos. Ocean Environ. Stud., 2 (1995), 31–40 | Zbl
[2] E. N. Lorenz, “Energy and numerical weather prediction”, Tellus, 12:4 (1960), 364–373 | DOI
[3] V. N. Krupchatnikov, G. P. Kurbatkin, Modelirovanie krupnomasshtabnoi dinamiki atmosfery. Metody diagnoza obschei tsirkulyatsii, VTs, Sib. otd-nie AN SSSR, Novosibirsk, 1991
[4] V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, MA, 1997 | MR | Zbl | Zbl
[5] B. V. Paltsev, Sfericheskie funktsii, MFTI, M., 2000
[6] Yu. N. Skiba, Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989
[7] V. P. Dymnikov, Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007
[8] M. S. Agranovich, “Elliptic singular integro-differential operators”, Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl
[9] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl
[10] S. G. Mikhlin, The problem of the minimum of a quadratic functional, Holden-Day, San Francisco–London–Amsterdam, 1965 | MR | MR | Zbl
[11] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Pergamon Press, Oxford–London–Edinburgh–New York–Paris–Frankfurt, 1965 | MR | MR | Zbl | Zbl
[12] S. G. Mikhlin, “Differentsirovanie ryadov po sfericheskim funktsiyam”, Dokl. AN SSSR, 126:2 (1959), 278–279 | MR | Zbl
[13] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR
[14] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[15] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | MR | Zbl | Zbl
[16] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005
[17] A. N. Shiryaev, Veroyatnost, v. 1, Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004
[18] O. Knill, Probability theory and stochastic processes with applications, Overseas Press, New Delhi, 2009
[19] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[20] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York–London, 1964 | MR | MR | Zbl | Zbl
[21] Yu. N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[22] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | MR | MR | Zbl | Zbl
[23] Yu. N. Skiba, Ob odnoznachnoi razreshimosti uravneniya barotropnogo vikhrya vyazkoi zhidkosti v klassakh obobschennykh funktsii na sfere, Preprint No194, OVM AN SSSR, M., 1988 | MR
[24] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Univ. Press, Cambridge, 2012 | Zbl
[25] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[26] M. S. Agranovich, Obobschennye funktsii, MTsNMO, M., 2008
[27] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publ., Delhi, 1971 | MR | MR | Zbl | Zbl
[28] A. F. Filippov, Differential equations with discontinuous right-hand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988 | MR | MR | Zbl | Zbl
[29] G. V. Demidenko, Vvedenie v teoriyu sobolevskikh prostranstv, Uchebnoe posobie, Izd-vo Novosib. un-ta, Novosibirsk, 1995 | MR | Zbl
[30] B. Øksendal, Stochastic differential equations, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl
[31] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland, Amsterdam–Oxford–New York, 1981 | MR | Zbl | Zbl
[32] A. S. Gorelov, “Razmernost attraktora dvusloinoi baroklinnoi modeli”, Dokl. RAN, 342:1 (1995), 101–104 | MR