Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere
Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1490-1517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the Cauchy problem for a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise, and random initial data is considered. This system is shown to be uniquely solvable, and an estimate for the continuous dependence of the solution on the set of random initial data and the right-hand side is established on a finite time interval. In passing, an estimate for the continuous dependence on the set of parameters, the initial data, and the right-hand side is obtained on a finite time interval for the solution of the Cauchy problem with deterministic initial data and deterministic right-hand side. Bibliography: 32 titles.
Keywords: two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, well-posed Cauchy problem, random initial data.
Mots-clés : white noise perturbation
@article{SM_2012_203_10_a3,
     author = {Yu. Yu. Klevtsova},
     title = {Well-posedness of the {Cauchy} problem for the stochastic system for the {Lorenz} model for a~baroclinic atmosphere},
     journal = {Sbornik. Mathematics},
     pages = {1490--1517},
     year = {2012},
     volume = {203},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1490
EP  - 1517
VL  - 203
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/
LA  - en
ID  - SM_2012_203_10_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere
%J Sbornik. Mathematics
%D 2012
%P 1490-1517
%V 203
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/
%G en
%F SM_2012_203_10_a3
Yu. Yu. Klevtsova. Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1490-1517. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a3/

[1] V. N. Krupchatnikov, “Global attractors for the Lorentz model on the sphere”, Bull. Novosib. Comput. Cent., Ser. Numer. Model. Atmos. Ocean Environ. Stud., 2 (1995), 31–40 | Zbl

[2] E. N. Lorenz, “Energy and numerical weather prediction”, Tellus, 12:4 (1960), 364–373 | DOI

[3] V. N. Krupchatnikov, G. P. Kurbatkin, Modelirovanie krupnomasshtabnoi dinamiki atmosfery. Metody diagnoza obschei tsirkulyatsii, VTs, Sib. otd-nie AN SSSR, Novosibirsk, 1991

[4] V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, MA, 1997 | MR | Zbl | Zbl

[5] B. V. Paltsev, Sfericheskie funktsii, MFTI, M., 2000

[6] Yu. N. Skiba, Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989

[7] V. P. Dymnikov, Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007

[8] M. S. Agranovich, “Elliptic singular integro-differential operators”, Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl

[9] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl

[10] S. G. Mikhlin, The problem of the minimum of a quadratic functional, Holden-Day, San Francisco–London–Amsterdam, 1965 | MR | MR | Zbl

[11] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Pergamon Press, Oxford–London–Edinburgh–New York–Paris–Frankfurt, 1965 | MR | MR | Zbl | Zbl

[12] S. G. Mikhlin, “Differentsirovanie ryadov po sfericheskim funktsiyam”, Dokl. AN SSSR, 126:2 (1959), 278–279 | MR | Zbl

[13] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[14] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[15] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | MR | Zbl | Zbl

[16] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005

[17] A. N. Shiryaev, Veroyatnost, v. 1, Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004

[18] O. Knill, Probability theory and stochastic processes with applications, Overseas Press, New Delhi, 2009

[19] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[20] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York–London, 1964 | MR | MR | Zbl | Zbl

[21] Yu. N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | MR | MR | Zbl | Zbl

[23] Yu. N. Skiba, Ob odnoznachnoi razreshimosti uravneniya barotropnogo vikhrya vyazkoi zhidkosti v klassakh obobschennykh funktsii na sfere, Preprint No194, OVM AN SSSR, M., 1988 | MR

[24] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Univ. Press, Cambridge, 2012 | Zbl

[25] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[26] M. S. Agranovich, Obobschennye funktsii, MTsNMO, M., 2008

[27] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publ., Delhi, 1971 | MR | MR | Zbl | Zbl

[28] A. F. Filippov, Differential equations with discontinuous right-hand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988 | MR | MR | Zbl | Zbl

[29] G. V. Demidenko, Vvedenie v teoriyu sobolevskikh prostranstv, Uchebnoe posobie, Izd-vo Novosib. un-ta, Novosibirsk, 1995 | MR | Zbl

[30] B. Øksendal, Stochastic differential equations, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl

[31] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland, Amsterdam–Oxford–New York, 1981 | MR | Zbl | Zbl

[32] A. S. Gorelov, “Razmernost attraktora dvusloinoi baroklinnoi modeli”, Dokl. RAN, 342:1 (1995), 101–104 | MR