$C^*$-algebras associated with reversible extensions of logistic maps
Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1448-1489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A. V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of $C^*$-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of ‘parameters’ (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.
Keywords: extensions of dynamical systems, logistic maps, partial isometry, $C^*$-algebra.
@article{SM_2012_203_10_a2,
     author = {B. K. Kwa\'sniewski},
     title = {$C^*$-algebras associated with reversible extensions of logistic maps},
     journal = {Sbornik. Mathematics},
     pages = {1448--1489},
     year = {2012},
     volume = {203},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/}
}
TY  - JOUR
AU  - B. K. Kwaśniewski
TI  - $C^*$-algebras associated with reversible extensions of logistic maps
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1448
EP  - 1489
VL  - 203
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/
LA  - en
ID  - SM_2012_203_10_a2
ER  - 
%0 Journal Article
%A B. K. Kwaśniewski
%T $C^*$-algebras associated with reversible extensions of logistic maps
%J Sbornik. Mathematics
%D 2012
%P 1448-1489
%V 203
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/
%G en
%F SM_2012_203_10_a2
B. K. Kwaśniewski. $C^*$-algebras associated with reversible extensions of logistic maps. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1448-1489. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/

[1] B. K. Kwaśniewski, A. V. Lebedev, “Reversible extensions of irreversible dynamical systems: the $C^*$-method”, Sb. Math., 199:11 (2008), 1621–1648 | DOI | MR | Zbl

[2] B. K. Kwaśniewski, Spectral analysis of operators generating irreversible dynamical systems, Doctoral dissertation, IM PAN, 2009

[3] A. B. Antonevich, A. V. Lebedev, Functional differential equations: I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994 | MR | Zbl

[4] A. V. Lebedev, A. Odzijewicz, “Extensions of $C^*$-algebras by partial isometries”, Sb. Math., 195:7 (2004), 951–982 | DOI | MR | Zbl

[5] J. Cuntz, “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl

[6] J. Cuntz, W. Krieger, “A class of $C^*$-algebras and topological Markov chains”, Invent. Math., 56:3 (1980), 251–268 | DOI | MR | Zbl

[7] W. L. Paschke, “The crossed product of a $C^*$-algebra by an endomorphism”, Proc. Amer. Math. Soc., 80:1 (1980), 113–118 | DOI | MR | Zbl

[8] G. J. Murphy, “Crossed products of $C^*$-algebras by endomorphisms”, Integral Equations Operator Theory, 24:3 (1996), 298–319 | DOI | MR | Zbl

[9] R. Exel, “Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence”, J. Funct. Anal., 122:2 (1994), 361–401 | DOI | MR | Zbl

[10] R. Exel, “A new look at the crossed-product of a $C^*$-algebra by an endomorphism”, Ergodic Theory Dynam. Systems, 23:6 (2003), 1733–1750 | DOI | MR | Zbl

[11] V. I. Bakhtin, A. V. Lebedev, When a $C^*$-algebra is a coefficient algebra for a given endomorphism, arXiv: math.OA/0502414

[12] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “Crossed product of a $C^*$-algebra by an endomorphism, coefficient algebras and transfer operators”, Sb. Math., 202:9 (2011), 1253–1283 | DOI | MR | Zbl

[13] B. K. Kwaśniewski, A. V. Lebedev, “Crossed product of a $C^*$-algebra by a semigroup of endomorphisms generated by partial isometries”, Integral Equations Operator Theory, 63:3 (2009), 403–425 | DOI | MR | Zbl

[14] B. K. Kwaśniewski, “On transfer operators for $C^*$-dynamical systems”, Rocky Mountain J. Math., 42:3 (2012), 919–936 | DOI | Zbl

[15] B. Abadie, S. Eilers, R. Exel, “Morita equivalence for crossed products by Hilbert $C^*$-bimodules”, Trans. Amer. Math. Soc., 350:8 (1998), 3043–3054 | DOI | MR | Zbl

[16] P. S. Muhly, B. Solel, “Tensor algebras over $C^*$-correspondences: representations, dilations, and $C^*$-envelopes”, J. Funct. Anal., 158:2 (1998), 389–457 | DOI | MR | Zbl

[17] T. Katsura, “On $C^*$-algebras associated with $C^*$-correspondences”, J. Funct. Anal., 217:2 (2004), 366–401 | DOI | MR | Zbl

[18] T. Katsura, “A construction of $C^*$-algebras from $C^*$-correspondences”, Advances in quantum dynamics (South Hadley, MA, 2002), Contemp. Math., 335, Amer. Math. Soc., Providence, RI, 2003, 173–182 | DOI | MR | Zbl

[19] S. Doplicher, J. E. Roberts, “A new duality theory for compact groups”, Invent. Math., 98:1 (1989), 157–218 | DOI | MR | Zbl

[20] B. K. Kwaśniewski, “$C^*$-algebras generalizing both relative Cuntz–Pimsner and Doplicher–Roberts algebras”, Trans. Amer. Math. (to appear)

[21] R. F. Williams, “Classification of one dimensional attractors”, Global Analysis (Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI, 1970, 341–361 | MR | Zbl

[22] M. Brin, G. Stuck, Introduction to dynamical systems, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[23] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley Publ., Redwood City, CA, 1989 | MR | Zbl

[24] S. B. Nadler, Continuum theory, Monogr. Textbooks Pure Appl. Math., 158, Dekker, New York, 1992 | MR | Zbl

[25] J. E. Anderson, I. F. Putnam, “Topological invariants for substitution tilings and their associated $C^*$-algebras”, Ergodic Theory Dynam. Systems, 18:3 (1998), 509–537 | DOI | MR | Zbl

[26] M. Barge, W. T. Ingram, “Inverse limits on $[0,1]$ using logistic bonding maps”, Topology Appl., 72:2 (1996), 159–172 | DOI | MR | Zbl

[27] M. Barge, J. Martin, “Chaos, periodicity, and snakelike continua”, Trans. Amer. Math. Soc., 289:1 (1985), 355–365 | DOI | MR | Zbl

[28] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, v. II, Grad. Stud. Math., 16, Advanced theory, Amer Math. Soc., Providence, RI, 1997 | MR | Zbl

[29] N. J. Fowler, P. S. Muhly, I. Raeburn, “Representations of Cuntz–Pimsner algebras”, Indiana Univ. Math. J., 52:3 (2003), 569–605 | DOI | MR | Zbl

[30] B. K. Kwaśniewski, A. V. Lebedev, Relative Cuntz–Pimsner algebras, partial isometric crossed products and reduction of relations, arXiv: 0704.3811

[31] W. T. Watkins, “Homeomorphic classification of certain inverse limit spaces with open bonding maps”, Pacific J. Math., 103:2 (1982), 589–601 | MR | Zbl

[32] P. Collet, J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Progr. Phys., 1, Birkhäuser, Boston, MA, 1980 | MR | Zbl

[33] B. K. Kwaśniewski, “Inverse limit systems associated with $F_2^n$ zero Schwarzian unimodal maps”, Bull. Soc. Sci. Lett. Łódz Sér. Rech. Déform., 48 (2005), 83–109 | MR | Zbl

[34] A. Denjoy, “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math Pures et Appl., 11 (1932), 333–375 | MR | Zbl