@article{SM_2012_203_10_a2,
author = {B. K. Kwa\'sniewski},
title = {$C^*$-algebras associated with reversible extensions of logistic maps},
journal = {Sbornik. Mathematics},
pages = {1448--1489},
year = {2012},
volume = {203},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/}
}
B. K. Kwaśniewski. $C^*$-algebras associated with reversible extensions of logistic maps. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1448-1489. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/
[1] B. K. Kwaśniewski, A. V. Lebedev, “Reversible extensions of irreversible dynamical systems: the $C^*$-method”, Sb. Math., 199:11 (2008), 1621–1648 | DOI | MR | Zbl
[2] B. K. Kwaśniewski, Spectral analysis of operators generating irreversible dynamical systems, Doctoral dissertation, IM PAN, 2009
[3] A. B. Antonevich, A. V. Lebedev, Functional differential equations: I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994 | MR | Zbl
[4] A. V. Lebedev, A. Odzijewicz, “Extensions of $C^*$-algebras by partial isometries”, Sb. Math., 195:7 (2004), 951–982 | DOI | MR | Zbl
[5] J. Cuntz, “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl
[6] J. Cuntz, W. Krieger, “A class of $C^*$-algebras and topological Markov chains”, Invent. Math., 56:3 (1980), 251–268 | DOI | MR | Zbl
[7] W. L. Paschke, “The crossed product of a $C^*$-algebra by an endomorphism”, Proc. Amer. Math. Soc., 80:1 (1980), 113–118 | DOI | MR | Zbl
[8] G. J. Murphy, “Crossed products of $C^*$-algebras by endomorphisms”, Integral Equations Operator Theory, 24:3 (1996), 298–319 | DOI | MR | Zbl
[9] R. Exel, “Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence”, J. Funct. Anal., 122:2 (1994), 361–401 | DOI | MR | Zbl
[10] R. Exel, “A new look at the crossed-product of a $C^*$-algebra by an endomorphism”, Ergodic Theory Dynam. Systems, 23:6 (2003), 1733–1750 | DOI | MR | Zbl
[11] V. I. Bakhtin, A. V. Lebedev, When a $C^*$-algebra is a coefficient algebra for a given endomorphism, arXiv: math.OA/0502414
[12] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “Crossed product of a $C^*$-algebra by an endomorphism, coefficient algebras and transfer operators”, Sb. Math., 202:9 (2011), 1253–1283 | DOI | MR | Zbl
[13] B. K. Kwaśniewski, A. V. Lebedev, “Crossed product of a $C^*$-algebra by a semigroup of endomorphisms generated by partial isometries”, Integral Equations Operator Theory, 63:3 (2009), 403–425 | DOI | MR | Zbl
[14] B. K. Kwaśniewski, “On transfer operators for $C^*$-dynamical systems”, Rocky Mountain J. Math., 42:3 (2012), 919–936 | DOI | Zbl
[15] B. Abadie, S. Eilers, R. Exel, “Morita equivalence for crossed products by Hilbert $C^*$-bimodules”, Trans. Amer. Math. Soc., 350:8 (1998), 3043–3054 | DOI | MR | Zbl
[16] P. S. Muhly, B. Solel, “Tensor algebras over $C^*$-correspondences: representations, dilations, and $C^*$-envelopes”, J. Funct. Anal., 158:2 (1998), 389–457 | DOI | MR | Zbl
[17] T. Katsura, “On $C^*$-algebras associated with $C^*$-correspondences”, J. Funct. Anal., 217:2 (2004), 366–401 | DOI | MR | Zbl
[18] T. Katsura, “A construction of $C^*$-algebras from $C^*$-correspondences”, Advances in quantum dynamics (South Hadley, MA, 2002), Contemp. Math., 335, Amer. Math. Soc., Providence, RI, 2003, 173–182 | DOI | MR | Zbl
[19] S. Doplicher, J. E. Roberts, “A new duality theory for compact groups”, Invent. Math., 98:1 (1989), 157–218 | DOI | MR | Zbl
[20] B. K. Kwaśniewski, “$C^*$-algebras generalizing both relative Cuntz–Pimsner and Doplicher–Roberts algebras”, Trans. Amer. Math. (to appear)
[21] R. F. Williams, “Classification of one dimensional attractors”, Global Analysis (Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI, 1970, 341–361 | MR | Zbl
[22] M. Brin, G. Stuck, Introduction to dynamical systems, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[23] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley Publ., Redwood City, CA, 1989 | MR | Zbl
[24] S. B. Nadler, Continuum theory, Monogr. Textbooks Pure Appl. Math., 158, Dekker, New York, 1992 | MR | Zbl
[25] J. E. Anderson, I. F. Putnam, “Topological invariants for substitution tilings and their associated $C^*$-algebras”, Ergodic Theory Dynam. Systems, 18:3 (1998), 509–537 | DOI | MR | Zbl
[26] M. Barge, W. T. Ingram, “Inverse limits on $[0,1]$ using logistic bonding maps”, Topology Appl., 72:2 (1996), 159–172 | DOI | MR | Zbl
[27] M. Barge, J. Martin, “Chaos, periodicity, and snakelike continua”, Trans. Amer. Math. Soc., 289:1 (1985), 355–365 | DOI | MR | Zbl
[28] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, v. II, Grad. Stud. Math., 16, Advanced theory, Amer Math. Soc., Providence, RI, 1997 | MR | Zbl
[29] N. J. Fowler, P. S. Muhly, I. Raeburn, “Representations of Cuntz–Pimsner algebras”, Indiana Univ. Math. J., 52:3 (2003), 569–605 | DOI | MR | Zbl
[30] B. K. Kwaśniewski, A. V. Lebedev, Relative Cuntz–Pimsner algebras, partial isometric crossed products and reduction of relations, arXiv: 0704.3811
[31] W. T. Watkins, “Homeomorphic classification of certain inverse limit spaces with open bonding maps”, Pacific J. Math., 103:2 (1982), 589–601 | MR | Zbl
[32] P. Collet, J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Progr. Phys., 1, Birkhäuser, Boston, MA, 1980 | MR | Zbl
[33] B. K. Kwaśniewski, “Inverse limit systems associated with $F_2^n$ zero Schwarzian unimodal maps”, Bull. Soc. Sci. Lett. Łódz Sér. Rech. Déform., 48 (2005), 83–109 | MR | Zbl
[34] A. Denjoy, “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math Pures et Appl., 11 (1932), 333–375 | MR | Zbl