$C^*$-algebras associated with reversible extensions of logistic maps
Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1448-1489

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A. V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of $C^*$-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of ‘parameters’ (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.
Keywords: extensions of dynamical systems, logistic maps, partial isometry, $C^*$-algebra.
@article{SM_2012_203_10_a2,
     author = {B. K. Kwa\'sniewski},
     title = {$C^*$-algebras associated with reversible extensions of logistic maps},
     journal = {Sbornik. Mathematics},
     pages = {1448--1489},
     publisher = {mathdoc},
     volume = {203},
     number = {10},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/}
}
TY  - JOUR
AU  - B. K. Kwaśniewski
TI  - $C^*$-algebras associated with reversible extensions of logistic maps
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1448
EP  - 1489
VL  - 203
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/
LA  - en
ID  - SM_2012_203_10_a2
ER  - 
%0 Journal Article
%A B. K. Kwaśniewski
%T $C^*$-algebras associated with reversible extensions of logistic maps
%J Sbornik. Mathematics
%D 2012
%P 1448-1489
%V 203
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/
%G en
%F SM_2012_203_10_a2
B. K. Kwaśniewski. $C^*$-algebras associated with reversible extensions of logistic maps. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1448-1489. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a2/