A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1411-1447
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This work suggests a method for deriving lower bounds for the complexity of polynomials with positive real coefficients implemented by circuits of functional elements over the monotone arithmetic basis
$\{x+y, \,x \cdot y\}\cup\{a \cdot x\mid a\in \mathbb R_+\}$. Using this method, several new results are obtained. In particular, we construct examples of polynomials of degree $m-1$ in each of the $n$ variables with coefficients 0 and 1 having additive monotone complexity $m^{(1-o(1))n}$ and multiplicative monotone complexity $m^{(1/2-o(1))n}$ as $m^n \to \infty$. In this form, the lower bounds derived here are
sharp.
Bibliography: 72 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
lower bounds for complexity, arithmetic circuits, thin sets, monotone complexity
Mots-clés : permanent.
                    
                  
                
                
                Mots-clés : permanent.
@article{SM_2012_203_10_a1,
     author = {S. B. Gashkov and I. S. Sergeev},
     title = {A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1411--1447},
     publisher = {mathdoc},
     volume = {203},
     number = {10},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a1/}
}
                      
                      
                    TY - JOUR AU - S. B. Gashkov AU - I. S. Sergeev TI - A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials JO - Sbornik. Mathematics PY - 2012 SP - 1411 EP - 1447 VL - 203 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a1/ LA - en ID - SM_2012_203_10_a1 ER -
%0 Journal Article %A S. B. Gashkov %A I. S. Sergeev %T A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials %J Sbornik. Mathematics %D 2012 %P 1411-1447 %V 203 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2012_203_10_a1/ %G en %F SM_2012_203_10_a1
S. B. Gashkov; I. S. Sergeev. A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1411-1447. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a1/
