Regularity of mappings inverse to Sobolev mappings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1383-1410
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For homeomorphisms $\varphi\colon\Omega\to \Omega'$ on Euclidean domains in $\mathbb R^n$, $n\geqslant2$, necessary and sufficient conditions ensuring that the inverse mapping belongs to a Sobolev class are investigated. The result obtained is used to describe a new two-index scale of homeomorphisms in some Sobolev class such that their inverses also form a two-index scale of mappings, in another Sobolev class.
This scale involves quasiconformal mappings and also homeomorphisms in the Sobolev class $W^1_{n-1}$ such that $\operatorname{rank}D\varphi(x)\leqslant n-2$ almost everywhere on the zero set of the Jacobian
$\det D\varphi(x)$.
Bibliography: 65 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Sobolev class of mappings, approximate differentiability, distortion and codistortion of mappings, generalized quasiconformal mapping, composition operator.
                    
                    
                    
                  
                
                
                @article{SM_2012_203_10_a0,
     author = {S. K. Vodopyanov},
     title = {Regularity of mappings inverse to {Sobolev} mappings},
     journal = {Sbornik. Mathematics},
     pages = {1383--1410},
     publisher = {mathdoc},
     volume = {203},
     number = {10},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a0/}
}
                      
                      
                    S. K. Vodopyanov. Regularity of mappings inverse to Sobolev mappings. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1383-1410. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a0/