Regularity of mappings inverse to Sobolev mappings
Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1383-1410

Voir la notice de l'article provenant de la source Math-Net.Ru

For homeomorphisms $\varphi\colon\Omega\to \Omega'$ on Euclidean domains in $\mathbb R^n$, $n\geqslant2$, necessary and sufficient conditions ensuring that the inverse mapping belongs to a Sobolev class are investigated. The result obtained is used to describe a new two-index scale of homeomorphisms in some Sobolev class such that their inverses also form a two-index scale of mappings, in another Sobolev class. This scale involves quasiconformal mappings and also homeomorphisms in the Sobolev class $W^1_{n-1}$ such that $\operatorname{rank}D\varphi(x)\leqslant n-2$ almost everywhere on the zero set of the Jacobian $\det D\varphi(x)$. Bibliography: 65 titles.
Keywords: Sobolev class of mappings, approximate differentiability, distortion and codistortion of mappings, generalized quasiconformal mapping, composition operator.
@article{SM_2012_203_10_a0,
     author = {S. K. Vodopyanov},
     title = {Regularity of mappings inverse to {Sobolev} mappings},
     journal = {Sbornik. Mathematics},
     pages = {1383--1410},
     publisher = {mathdoc},
     volume = {203},
     number = {10},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_10_a0/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - Regularity of mappings inverse to Sobolev mappings
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1383
EP  - 1410
VL  - 203
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_10_a0/
LA  - en
ID  - SM_2012_203_10_a0
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T Regularity of mappings inverse to Sobolev mappings
%J Sbornik. Mathematics
%D 2012
%P 1383-1410
%V 203
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_10_a0/
%G en
%F SM_2012_203_10_a0
S. K. Vodopyanov. Regularity of mappings inverse to Sobolev mappings. Sbornik. Mathematics, Tome 203 (2012) no. 10, pp. 1383-1410. http://geodesic.mathdoc.fr/item/SM_2012_203_10_a0/